Héctor Martín-Cardoso , Gerrit Bücker , Iratxe Busturia , Blanca San Segundo
{"title":"Unravelling mechanisms underlying phosphate-induced susceptibility to Bakanae disease in rice","authors":"Héctor Martín-Cardoso , Gerrit Bücker , Iratxe Busturia , Blanca San Segundo","doi":"10.1016/j.stress.2025.100766","DOIUrl":null,"url":null,"abstract":"<div><div>Rice is one of the most important crops in the world and sustains >50 % of the world's population. Rice production is, however, severely threatened by bakanae disease, caused by the fungus <em>Fusarium fujikuroi</em>. Due to low soil phosphorus bioavailability, phosphorus fertilizers are routinely used to optimize rice production, which has led to excessive P accumulation in rice fields. We show that high phosphate fertilization enhances susceptibility to bakanae. Similarly, <em>MIR399</em> overexpression increases phosphate content and enhances susceptibility to <em>F. fujikuroi</em> infection. <em>In vivo</em> imaging of the infection process using a green fluorescent protein-expressing <em>F. fujikuroi</em> isolate revealed higher fungal colonization in roots of plants grown under high-phosphate supply compared to plants under low-phosphate, which is in agreement with the observed phenotype of bakanae susceptibility in phosphate-accumulating plants. Moreover, a weaker activation of defense-related genes and reduced accumulation of ROS occurs during infection in rice plants grown under high phosphate supply. Histochemical detection of lignin and suberin showed reduced accumulation of lignin and suberin in roots of rice plants grown under high-phosphate fertilization, which was consistent with a weaker induction of lignin biosynthesis genes and suberin-related genes in those plants. Taken together, these results indicate that phosphate accumulation represses host immune responses and promotes susceptibility to bakanae. This information provides a basis to understand mechanisms underlying phosphate-induced susceptibility to pathogen infection in rice, which might be useful to reduce the use of agrochemicals, pesticides and fertilizers, in protecting rice from bakanae.</div></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"15 ","pages":"Article 100766"},"PeriodicalIF":6.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X25000314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice is one of the most important crops in the world and sustains >50 % of the world's population. Rice production is, however, severely threatened by bakanae disease, caused by the fungus Fusarium fujikuroi. Due to low soil phosphorus bioavailability, phosphorus fertilizers are routinely used to optimize rice production, which has led to excessive P accumulation in rice fields. We show that high phosphate fertilization enhances susceptibility to bakanae. Similarly, MIR399 overexpression increases phosphate content and enhances susceptibility to F. fujikuroi infection. In vivo imaging of the infection process using a green fluorescent protein-expressing F. fujikuroi isolate revealed higher fungal colonization in roots of plants grown under high-phosphate supply compared to plants under low-phosphate, which is in agreement with the observed phenotype of bakanae susceptibility in phosphate-accumulating plants. Moreover, a weaker activation of defense-related genes and reduced accumulation of ROS occurs during infection in rice plants grown under high phosphate supply. Histochemical detection of lignin and suberin showed reduced accumulation of lignin and suberin in roots of rice plants grown under high-phosphate fertilization, which was consistent with a weaker induction of lignin biosynthesis genes and suberin-related genes in those plants. Taken together, these results indicate that phosphate accumulation represses host immune responses and promotes susceptibility to bakanae. This information provides a basis to understand mechanisms underlying phosphate-induced susceptibility to pathogen infection in rice, which might be useful to reduce the use of agrochemicals, pesticides and fertilizers, in protecting rice from bakanae.
期刊介绍:
The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues.
Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and:
Lack of water (drought) and excess (flooding),
Salinity stress,
Elevated temperature and/or low temperature (chilling and freezing),
Hypoxia and/or anoxia,
Mineral nutrient excess and/or deficiency,
Heavy metals and/or metalloids,
Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection,
Viral, phytoplasma, bacterial and fungal plant-pathogen interactions.
The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.