Comparative assays revealed distinct toxicity characterizations between pymetrozine and flonicamid

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2025-02-07 DOI:10.1016/j.pestbp.2025.106319
Tengfei Liu, Jianguo Niu, Yuying Gao, Xuan Liu, Jianya Su
{"title":"Comparative assays revealed distinct toxicity characterizations between pymetrozine and flonicamid","authors":"Tengfei Liu,&nbsp;Jianguo Niu,&nbsp;Yuying Gao,&nbsp;Xuan Liu,&nbsp;Jianya Su","doi":"10.1016/j.pestbp.2025.106319","DOIUrl":null,"url":null,"abstract":"<div><div>Flonicamid is an insecticide with a unique mode of action, primarily inhibiting the feeding behavior of sap-sucking insects. However, its molecular target remains controversial. Reports indicate that both flonicamid and pymetrozine affect insect behavior and mobility. To investigate further, we compared the susceptibility of three insect species (<em>Myzus persicae</em>, <em>Nilaparvata lugens</em>, and <em>Drosophila melanogaster</em>) to flonicamid and pymetrozine under two different feeding postures. Results showed that feeding posture did not affect the survival curves or mean lifespans of the three insects. However, insect lifespans were significantly reduced under exposure to either insecticide compared to untreated controls. The effects of the two insecticides on susceptibility and lifespan under different feeding postures were markedly different: feeding posture significantly influenced the sensitivity of aphids, planthoppers, and fruit flies to pymetrozine but had minimal effects on the sensitivity of aphids and planthoppers to flonicamid. Flonicamid had only a minor impact on fruit flies' sensitivity. Survival curve analysis also revealed significant differences under pymetrozine stress, while no such differences were observed under flonicamid stress. These findings indicate that flonicamid exerts different toxicological effects on target insects (aphids and planthoppers) <em>versus</em> non-target insects (fruit flies), depending on feeding posture. This suggests that the toxicological mechanisms of flonicamid differ substantially between target and non-target organisms, with implications that findings in non-target insects may not directly apply to target pests. Our study provides valuable insights and directions for further research into flonicamid's mode of action, aiding in elucidating its underlying mechanisms.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106319"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004835752500032X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flonicamid is an insecticide with a unique mode of action, primarily inhibiting the feeding behavior of sap-sucking insects. However, its molecular target remains controversial. Reports indicate that both flonicamid and pymetrozine affect insect behavior and mobility. To investigate further, we compared the susceptibility of three insect species (Myzus persicae, Nilaparvata lugens, and Drosophila melanogaster) to flonicamid and pymetrozine under two different feeding postures. Results showed that feeding posture did not affect the survival curves or mean lifespans of the three insects. However, insect lifespans were significantly reduced under exposure to either insecticide compared to untreated controls. The effects of the two insecticides on susceptibility and lifespan under different feeding postures were markedly different: feeding posture significantly influenced the sensitivity of aphids, planthoppers, and fruit flies to pymetrozine but had minimal effects on the sensitivity of aphids and planthoppers to flonicamid. Flonicamid had only a minor impact on fruit flies' sensitivity. Survival curve analysis also revealed significant differences under pymetrozine stress, while no such differences were observed under flonicamid stress. These findings indicate that flonicamid exerts different toxicological effects on target insects (aphids and planthoppers) versus non-target insects (fruit flies), depending on feeding posture. This suggests that the toxicological mechanisms of flonicamid differ substantially between target and non-target organisms, with implications that findings in non-target insects may not directly apply to target pests. Our study provides valuable insights and directions for further research into flonicamid's mode of action, aiding in elucidating its underlying mechanisms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Molecular docking and mutation sites of CYP57A1 enzyme with Fomesafen Gut symbionts affect Plutella xylostella (L.) susceptibility to chlorantraniliprole Protective roles of chitin synthase gene 1 in Nilaparvata lugens against Cordyceps javanica and insecticides Heat activation desensitizes Aedes aegypti transient receptor potential ankyrin 1 (AaTRPA1) to chemical agonists that repel mosquitoes Altered Octopamine synthesis impairs tyrosine metabolism affecting Helicoverpa armigera vitality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1