Protective roles of chitin synthase gene 1 in Nilaparvata lugens against Cordyceps javanica and insecticides

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2025-02-11 DOI:10.1016/j.pestbp.2025.106324
Shuai Sun , Miao Sun , Pengfei Du , Hongtao Niu , Zhichun Zhang , Dongxiao Zhao , Xiangdong Liu , Huifang Guo
{"title":"Protective roles of chitin synthase gene 1 in Nilaparvata lugens against Cordyceps javanica and insecticides","authors":"Shuai Sun ,&nbsp;Miao Sun ,&nbsp;Pengfei Du ,&nbsp;Hongtao Niu ,&nbsp;Zhichun Zhang ,&nbsp;Dongxiao Zhao ,&nbsp;Xiangdong Liu ,&nbsp;Huifang Guo","doi":"10.1016/j.pestbp.2025.106324","DOIUrl":null,"url":null,"abstract":"<div><div>The chitin synthase gene 1 (<em>CHS1</em>) is a key gene in insect chitin synthesis pathway, it plays a critical role in the insect's survival and development. However, the protective functions of <em>CHS1</em> in response to pathogens and chemical insecticides remain poorly understood. In this study, we analyzed the functional domain and phylogenetic relationship of <em>CHS1</em> in <em>Nilaparvata lugens</em> and other insects. Our findings revealed a conserved C-terminal domain in the <em>CHS1</em> protein, as well as an evolutionary conservation across insect species. And then we found the <em>CHS1</em> gene was highly expressed during the fifth instar nymph stage, and there was a differential expression and regulation of <em>CHS1</em> in response to pathogen infection and exposure to various chemical insecticides. After that, we further discovered RNA interference (RNAi) mediated knockdown of <em>CHS1</em> significantly increased the susceptibility of <em>N. lugens</em> to <em>Cordyceps javanica</em> and two chemical insecticides, nitenpyram and dinotefuran, but had no effect on triflumezopyrim. And we used scanning electron microscope to observe an increase in appressoria formation on the cuticle of <em>N. lugens</em> following <em>CHS1</em> knock down, which accelerated the infection by <em>C. javanica</em>. These findings showed that <em>CHS1</em> in <em>N. lugens</em> provide protection against pathogen and chemical insecticides, and highlighted the potential of targeting <em>CHS1</em> to develop novel pest management strategies.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106324"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000379","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The chitin synthase gene 1 (CHS1) is a key gene in insect chitin synthesis pathway, it plays a critical role in the insect's survival and development. However, the protective functions of CHS1 in response to pathogens and chemical insecticides remain poorly understood. In this study, we analyzed the functional domain and phylogenetic relationship of CHS1 in Nilaparvata lugens and other insects. Our findings revealed a conserved C-terminal domain in the CHS1 protein, as well as an evolutionary conservation across insect species. And then we found the CHS1 gene was highly expressed during the fifth instar nymph stage, and there was a differential expression and regulation of CHS1 in response to pathogen infection and exposure to various chemical insecticides. After that, we further discovered RNA interference (RNAi) mediated knockdown of CHS1 significantly increased the susceptibility of N. lugens to Cordyceps javanica and two chemical insecticides, nitenpyram and dinotefuran, but had no effect on triflumezopyrim. And we used scanning electron microscope to observe an increase in appressoria formation on the cuticle of N. lugens following CHS1 knock down, which accelerated the infection by C. javanica. These findings showed that CHS1 in N. lugens provide protection against pathogen and chemical insecticides, and highlighted the potential of targeting CHS1 to develop novel pest management strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Molecular docking and mutation sites of CYP57A1 enzyme with Fomesafen Benfuracarb impairs zebrafish swim bladder development via the JNK2 pathway mediated inhibition of autophagy Gut symbionts affect Plutella xylostella (L.) susceptibility to chlorantraniliprole Protective roles of chitin synthase gene 1 in Nilaparvata lugens against Cordyceps javanica and insecticides Heat activation desensitizes Aedes aegypti transient receptor potential ankyrin 1 (AaTRPA1) to chemical agonists that repel mosquitoes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1