Heat activation desensitizes Aedes aegypti transient receptor potential ankyrin 1 (AaTRPA1) to chemical agonists that repel mosquitoes

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2025-02-11 DOI:10.1016/j.pestbp.2025.106326
Yeaeun Park, Peter M. Piermarini
{"title":"Heat activation desensitizes Aedes aegypti transient receptor potential ankyrin 1 (AaTRPA1) to chemical agonists that repel mosquitoes","authors":"Yeaeun Park,&nbsp;Peter M. Piermarini","doi":"10.1016/j.pestbp.2025.106326","DOIUrl":null,"url":null,"abstract":"<div><div>Mosquito transient receptor potential ankyrin 1 (TRPA1) channels are nociceptors that can be activated by noxious heat and/or chemicals (e.g., electrophiles). When activated, TRPA1 channels typically trigger avoidance behaviors. Previous studies have found that mosquito TRPA1 channels play important roles in host-seeking, preferred temperature selection, and avoidance of noxious heat and chemicals in the environment. Accordingly, TRPA1 channels are considered valuable biochemical targets for developing mosquito repellents and/or antifeedants. However, it is presently unknown whether heat activation of mosquito TRPA1 channels impacts their activation by chemical agonists that repel mosquitoes, such as catnip oil and citronellal. To address this gap in knowledge, we heterologously expressed <em>Aedes aegypti</em> TRPA1 (AaTRPA1) in <em>Xenopus laevis</em> oocytes and evaluated its electrophysiological responses to chemical agonists in the presence or absence of a heat stimulus. We found that when AaTRPA1 was heat activated it exhibited dampened electrophysiological responses to either catnip oil or citronellal. Subsequent airborne repellency bioassays with adult female <em>Ae. aegypti</em> revealed that mosquitoes were less repelled by either catnip oil or citronellal when exposed to an increase of ambient temperature that exceeded the heat activation threshold for AaTRPA1 (i.e., &gt;32 °C); in contrast, the repellency of DEET (a non-TRPA1 agonist) was unaffected. Our results suggest that TRPA1-agonizing repellents may offer less protection from mosquitoes when ambient temperatures exceed the thermal activation threshold of mosquito TRPA1 channels. This may have important implications for the choice of mosquito repellents used during extreme heat events, which are becoming more common because of global climate change.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"209 ","pages":"Article 106326"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000392","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mosquito transient receptor potential ankyrin 1 (TRPA1) channels are nociceptors that can be activated by noxious heat and/or chemicals (e.g., electrophiles). When activated, TRPA1 channels typically trigger avoidance behaviors. Previous studies have found that mosquito TRPA1 channels play important roles in host-seeking, preferred temperature selection, and avoidance of noxious heat and chemicals in the environment. Accordingly, TRPA1 channels are considered valuable biochemical targets for developing mosquito repellents and/or antifeedants. However, it is presently unknown whether heat activation of mosquito TRPA1 channels impacts their activation by chemical agonists that repel mosquitoes, such as catnip oil and citronellal. To address this gap in knowledge, we heterologously expressed Aedes aegypti TRPA1 (AaTRPA1) in Xenopus laevis oocytes and evaluated its electrophysiological responses to chemical agonists in the presence or absence of a heat stimulus. We found that when AaTRPA1 was heat activated it exhibited dampened electrophysiological responses to either catnip oil or citronellal. Subsequent airborne repellency bioassays with adult female Ae. aegypti revealed that mosquitoes were less repelled by either catnip oil or citronellal when exposed to an increase of ambient temperature that exceeded the heat activation threshold for AaTRPA1 (i.e., >32 °C); in contrast, the repellency of DEET (a non-TRPA1 agonist) was unaffected. Our results suggest that TRPA1-agonizing repellents may offer less protection from mosquitoes when ambient temperatures exceed the thermal activation threshold of mosquito TRPA1 channels. This may have important implications for the choice of mosquito repellents used during extreme heat events, which are becoming more common because of global climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Molecular docking and mutation sites of CYP57A1 enzyme with Fomesafen Benfuracarb impairs zebrafish swim bladder development via the JNK2 pathway mediated inhibition of autophagy Gut symbionts affect Plutella xylostella (L.) susceptibility to chlorantraniliprole Protective roles of chitin synthase gene 1 in Nilaparvata lugens against Cordyceps javanica and insecticides Heat activation desensitizes Aedes aegypti transient receptor potential ankyrin 1 (AaTRPA1) to chemical agonists that repel mosquitoes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1