{"title":"Lactobacillomics as a new notion in lactic acid bacteria research through omics integration.","authors":"Özge Kahraman Ilıkkan","doi":"10.1007/s11274-025-04285-y","DOIUrl":null,"url":null,"abstract":"<p><p>Omics technologies are a set of disciplines that analyze large-scale molecular data to understand biological systems in a holistic way. These technologies aim to reveal the structure, functions and interactions of organisms by studying processes at many levels of biomolecules, from the genome to metabolism. Lactobacillomics is introduced as an interdisciplinary field that integrates multiple \"omics\" technologies-including genomics, transcriptomics, proteomics, metabolomics, and metagenomics- to provide a comprehensive insight into \"lactic acid bacteria\" species. Lactobacillomics aims to elucidate the genetic, metabolic, and functional characteristics of lactic acid bacteria (LAB) species, providing insights into the mechanisms underlying their probiotic effects and contributions to the host microbiome. By analyzing genomes and metabolic pathways, researchers can identify specific genes responsible for health-promoting functions and desirable fermentation characteristics, which can guide the development of targeted probiotic strains with optimized health benefits. The integration of these omics data allows facilitating the discovery of biomarkers for health and disease states, the development of new probiotics tailored to specific populations or health conditions, and the optimization of fermentation processes to enhance the safety, flavor, and nutritional profile of fermented foods. A comprehensive review and bibliometric analysis were conducted to provide an overview of this promising field between 2005 and 2025 by examining Web of Science Core Collection data. Research results reveal trending topics, future perspectives, and key areas of growth within lactic acid bacteria (LAB) studies, particularly as they intersect with omics technologies.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"68"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11811450/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04285-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Omics technologies are a set of disciplines that analyze large-scale molecular data to understand biological systems in a holistic way. These technologies aim to reveal the structure, functions and interactions of organisms by studying processes at many levels of biomolecules, from the genome to metabolism. Lactobacillomics is introduced as an interdisciplinary field that integrates multiple "omics" technologies-including genomics, transcriptomics, proteomics, metabolomics, and metagenomics- to provide a comprehensive insight into "lactic acid bacteria" species. Lactobacillomics aims to elucidate the genetic, metabolic, and functional characteristics of lactic acid bacteria (LAB) species, providing insights into the mechanisms underlying their probiotic effects and contributions to the host microbiome. By analyzing genomes and metabolic pathways, researchers can identify specific genes responsible for health-promoting functions and desirable fermentation characteristics, which can guide the development of targeted probiotic strains with optimized health benefits. The integration of these omics data allows facilitating the discovery of biomarkers for health and disease states, the development of new probiotics tailored to specific populations or health conditions, and the optimization of fermentation processes to enhance the safety, flavor, and nutritional profile of fermented foods. A comprehensive review and bibliometric analysis were conducted to provide an overview of this promising field between 2005 and 2025 by examining Web of Science Core Collection data. Research results reveal trending topics, future perspectives, and key areas of growth within lactic acid bacteria (LAB) studies, particularly as they intersect with omics technologies.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.