Indu Pant, Akhilesh A Potnis, Ravindranath Shashidhar
{"title":"Gene knockout studies of Dps protein reveals a novel role for DNA-binding protein in maintaining outer membrane permeability.","authors":"Indu Pant, Akhilesh A Potnis, Ravindranath Shashidhar","doi":"10.1007/s11274-025-04269-y","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-binding proteins like Dps are crucial for bacterial stress physiology. This study investigated the unexpected role of Dps protein in maintaining outer membrane integrity of Salmonella Typhimurium. We observed that a Δdps mutant displayed increased sensitivity to glycopeptide antibiotics (vancomycin, nisin), which are ineffective against Gram-negative bacteria due to their thick outer membrane (OM). Furthermore, the Δdps mutant exhibited susceptibility to membrane-disrupting agents like detergents (deoxycholate, SDS) and phages. The perforation was observed in OM after the treatment of vancomycin using atomic force microscopy. Notably, this sensitivity was rescued by supplementing the media with calcium and magnesium cations. These findings suggest a novel function for Dps in maintaining outer membrane permeability. We propose two potential mechanisms: 1) Dps might directly localize to the outer membrane 2) Dps might regulate genes responsible for lipopolysaccharide synthesis or outer membrane proteins, key components of outer membrane. This study highlights a previously unknown role for Dps beyond DNA binding and warrants further investigation into the precise mechanism by which it influences outer membrane integrity in Salmonella.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"41 2","pages":"70"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-025-04269-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNA-binding proteins like Dps are crucial for bacterial stress physiology. This study investigated the unexpected role of Dps protein in maintaining outer membrane integrity of Salmonella Typhimurium. We observed that a Δdps mutant displayed increased sensitivity to glycopeptide antibiotics (vancomycin, nisin), which are ineffective against Gram-negative bacteria due to their thick outer membrane (OM). Furthermore, the Δdps mutant exhibited susceptibility to membrane-disrupting agents like detergents (deoxycholate, SDS) and phages. The perforation was observed in OM after the treatment of vancomycin using atomic force microscopy. Notably, this sensitivity was rescued by supplementing the media with calcium and magnesium cations. These findings suggest a novel function for Dps in maintaining outer membrane permeability. We propose two potential mechanisms: 1) Dps might directly localize to the outer membrane 2) Dps might regulate genes responsible for lipopolysaccharide synthesis or outer membrane proteins, key components of outer membrane. This study highlights a previously unknown role for Dps beyond DNA binding and warrants further investigation into the precise mechanism by which it influences outer membrane integrity in Salmonella.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.