{"title":"Design and semisynthesis of novel oleanolic acid-based tertiary amide derivatives as promising antifungal agents against phytopathogenic fungi.","authors":"Guoqing Sui, Jiayi Sun, Ailing Zhang, Shuhua Cao, Xiaobo Huang","doi":"10.1007/s11030-025-11123-8","DOIUrl":null,"url":null,"abstract":"<p><p>To further explore and discover natural products-based antifungal agents, seventeen tertiary amide-oleanolic acid hybrids were designed and synthesized, and structurally confirmed by <sup>1</sup>H NMR, <sup>13</sup>C NMR, HRMS, and melting point. Bioassay results illustrated that derivative 4 k exhibited prominent in vitro inhibitory activity against the mycelium growth of Gaeumannomyces graminis and Valsa mali with the EC<sub>50</sub> values of 41.77 and 43.96 μg/mL, respectively. Meanwhile, the structure-activity relationships were also summarized. Moreover, in vivo control efficacy demonstrated that derivative 4 k displayed remarkable curative effect (CE) against V. mali at 200 μg/mL with the value of 52.6%, evidently superior to that of the positive control carbendazim (41.5%). Besides, derivative 4 k also exhibited good CE against Botrytis cinerea at 200 μg/mL with the value of 33.0%. Scanning electron microscope analysis initially indicated that derivative 4 k may exert its antifungal effect by leading to abnormal morphology on the mycelium surface, resulting in the aberrant hypha growth.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11123-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
To further explore and discover natural products-based antifungal agents, seventeen tertiary amide-oleanolic acid hybrids were designed and synthesized, and structurally confirmed by 1H NMR, 13C NMR, HRMS, and melting point. Bioassay results illustrated that derivative 4 k exhibited prominent in vitro inhibitory activity against the mycelium growth of Gaeumannomyces graminis and Valsa mali with the EC50 values of 41.77 and 43.96 μg/mL, respectively. Meanwhile, the structure-activity relationships were also summarized. Moreover, in vivo control efficacy demonstrated that derivative 4 k displayed remarkable curative effect (CE) against V. mali at 200 μg/mL with the value of 52.6%, evidently superior to that of the positive control carbendazim (41.5%). Besides, derivative 4 k also exhibited good CE against Botrytis cinerea at 200 μg/mL with the value of 33.0%. Scanning electron microscope analysis initially indicated that derivative 4 k may exert its antifungal effect by leading to abnormal morphology on the mycelium surface, resulting in the aberrant hypha growth.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;