Machine learning and cheminformatics-based Identification of lichen-derived compounds targeting mutant PBP4R200L in Staphylococcus aureus.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2025-02-15 DOI:10.1007/s11030-025-11125-6
Shalini Mathpal, Tushar Joshi, P Priyamvada, Sudha Ramaiah, Anand Anbarasu
{"title":"Machine learning and cheminformatics-based Identification of lichen-derived compounds targeting mutant PBP4<sup>R200L</sup> in Staphylococcus aureus.","authors":"Shalini Mathpal, Tushar Joshi, P Priyamvada, Sudha Ramaiah, Anand Anbarasu","doi":"10.1007/s11030-025-11125-6","DOIUrl":null,"url":null,"abstract":"<p><p>Penicillin-binding protein 4 (PBP4) is essential in imparting significant β-lactam antibiotics resistance in Staphylococcus aureus (S. aureus) and the mutation R200L in PBP4 is linked to β-lactam non-susceptibility in natural strains, complicating treatment options. Therefore, discovering novel therapeutics against the mutant PBP4 is crucial, and natural compounds from lichen have found relevance in this regard. The aim of our study was to identify novel inhibitors against the R200L mutation by applying machine learning (ML) approach. Predictive classification models were developed using six machine learning algorithms to categorize lichen-derived compounds as either active or inactive. The models were evaluated using ROC curves, confusion matrices, and relevant statistical parameters. Among these, the Extra Trees algorithm showed superior predictive accuracy at 81%. The model identified 115 potentially active compounds from lichen, which were further evaluated for drug-likeness and structural similarity to β-lactam antibiotics. The top 23 compounds, showing similarity to β-lactam drug, were subjected to molecular docking. Among the top 10 compounds, two compounds, Barbatolic acid and Orcinyl lecanorate, displayed promising results in 200 ns molecular dynamics (MD) simulations and MM-PBSA analysis, exhibiting better docking score compare to reference compound. Additionally, DFT calculations revealed negative binding energies and smaller HOMO-LUMO gaps for both compounds. The obtained results prove the utility of ML in screening natural compounds, and provide novel opportunities for the design of antimicrobial compounds in the future.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11125-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Penicillin-binding protein 4 (PBP4) is essential in imparting significant β-lactam antibiotics resistance in Staphylococcus aureus (S. aureus) and the mutation R200L in PBP4 is linked to β-lactam non-susceptibility in natural strains, complicating treatment options. Therefore, discovering novel therapeutics against the mutant PBP4 is crucial, and natural compounds from lichen have found relevance in this regard. The aim of our study was to identify novel inhibitors against the R200L mutation by applying machine learning (ML) approach. Predictive classification models were developed using six machine learning algorithms to categorize lichen-derived compounds as either active or inactive. The models were evaluated using ROC curves, confusion matrices, and relevant statistical parameters. Among these, the Extra Trees algorithm showed superior predictive accuracy at 81%. The model identified 115 potentially active compounds from lichen, which were further evaluated for drug-likeness and structural similarity to β-lactam antibiotics. The top 23 compounds, showing similarity to β-lactam drug, were subjected to molecular docking. Among the top 10 compounds, two compounds, Barbatolic acid and Orcinyl lecanorate, displayed promising results in 200 ns molecular dynamics (MD) simulations and MM-PBSA analysis, exhibiting better docking score compare to reference compound. Additionally, DFT calculations revealed negative binding energies and smaller HOMO-LUMO gaps for both compounds. The obtained results prove the utility of ML in screening natural compounds, and provide novel opportunities for the design of antimicrobial compounds in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Discovery of the novel celastrol-based PROTACs for the treatment of non-small cell lung cancer. Machine learning and cheminformatics-based Identification of lichen-derived compounds targeting mutant PBP4R200L in Staphylococcus aureus. Discovery of novel covalent stabilizers for p53 Y220C using structure-based drug discovery methods. A review on pyrimidine-based pharmacophore as a template for the development of hybrid drugs with anticancer potential. Design and semisynthesis of novel oleanolic acid-based tertiary amide derivatives as promising antifungal agents against phytopathogenic fungi.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1