Yiming Wen, Peijia Xu, Yijie Chen, Jingyi Meng, Mingyue Zheng, Sulin Zhang, Dan Teng, Xutong Li
{"title":"Discovery of novel covalent stabilizers for p53 Y220C using structure-based drug discovery methods.","authors":"Yiming Wen, Peijia Xu, Yijie Chen, Jingyi Meng, Mingyue Zheng, Sulin Zhang, Dan Teng, Xutong Li","doi":"10.1007/s11030-024-11095-1","DOIUrl":null,"url":null,"abstract":"<p><p>The p53 Y220C mutation, a prevalent structural variant in human cancers, compromises DNA binding and tumor suppressor functions by destabilizing the protein structure. Leveraging a combined approach of structure-based virtual screening, molecular dynamics simulations, and in vitro assays, we have identified C8, a racemic compound with an indole core and α, β-unsaturated carbonyl groups, as a covalent stabilizer for p53 Y220C. Protein thermal shift and homogeneous time-resolved fluorescence assays confirmed that C8 and its analogs selectively bind to p53 Y220C and restore its DNA binding ability. Subsequent molecular dynamics simulations and structure-activity relationship analyses showed that both enantiomers of C8 form covalent bonds with Cys124 and Cys220, stabilizing the mutant structure. C8 and its analogs emerge as promising lead candidates for restoring the Y220C mutant's transcriptional function, highlights the potential of this scaffold for further optimization into p53 Y220C-targeted therapeutics.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11095-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The p53 Y220C mutation, a prevalent structural variant in human cancers, compromises DNA binding and tumor suppressor functions by destabilizing the protein structure. Leveraging a combined approach of structure-based virtual screening, molecular dynamics simulations, and in vitro assays, we have identified C8, a racemic compound with an indole core and α, β-unsaturated carbonyl groups, as a covalent stabilizer for p53 Y220C. Protein thermal shift and homogeneous time-resolved fluorescence assays confirmed that C8 and its analogs selectively bind to p53 Y220C and restore its DNA binding ability. Subsequent molecular dynamics simulations and structure-activity relationship analyses showed that both enantiomers of C8 form covalent bonds with Cys124 and Cys220, stabilizing the mutant structure. C8 and its analogs emerge as promising lead candidates for restoring the Y220C mutant's transcriptional function, highlights the potential of this scaffold for further optimization into p53 Y220C-targeted therapeutics.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;