{"title":"Design, synthesis, and antibacterial activity of novel amide derivatives containing a sulfone moiety.","authors":"Yue Zou, Xing Liu, Zongnan Zhu, Chao Zhang, Yong Zhang, Yuanzheng Zhao, Xiang Zhu, Jixiang Chen","doi":"10.1007/s11030-024-11088-0","DOIUrl":null,"url":null,"abstract":"<p><p>Twenty-four amide compounds containing a sulfone moiety were synthesized and the antibacterial activity of the target compounds was tested. Some compounds show excellent antibacterial activity. For example, compound AC4 exhibited broad antibacterial activity with the EC<sub>50</sub> of 0.55 mg/L for Xanthomonas axonopodis pv. citr (Xac), and 0.48 mg/L for Xanthomonas oryzae pv. oryzae (Xoo). In the greenhouse, compound AC4 with a concentration of 200 mg/L had good protective activity (39.3%) and curative activity (42.2%) against bacterial leaf blight, both were superior to the commercial antibacterial thiodiazole-copper (19.2% and 31.8%) and bismerthiazol (27.4% and 23.1%). The compound AC4 can inhibit the normal growth of Xoo by inhibiting the virality factors of Xoo (motility, exopolysaccharides, and biofilms). At the same time, molecular docking results showed that compound AC4 could interact with exopolysaccharides and quorum sensing-related proteins. This result was further supported by relative gene expression analysis. In addition, the compound AC4 can also increase membrane permeability, induce intracellular reactive oxygen species (ROS) levels to rise, and cause the surface of Xoo to change. The compound AC4 can be further studied as a potential antibacterial agent and this structure will continue to be optimized.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11088-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Twenty-four amide compounds containing a sulfone moiety were synthesized and the antibacterial activity of the target compounds was tested. Some compounds show excellent antibacterial activity. For example, compound AC4 exhibited broad antibacterial activity with the EC50 of 0.55 mg/L for Xanthomonas axonopodis pv. citr (Xac), and 0.48 mg/L for Xanthomonas oryzae pv. oryzae (Xoo). In the greenhouse, compound AC4 with a concentration of 200 mg/L had good protective activity (39.3%) and curative activity (42.2%) against bacterial leaf blight, both were superior to the commercial antibacterial thiodiazole-copper (19.2% and 31.8%) and bismerthiazol (27.4% and 23.1%). The compound AC4 can inhibit the normal growth of Xoo by inhibiting the virality factors of Xoo (motility, exopolysaccharides, and biofilms). At the same time, molecular docking results showed that compound AC4 could interact with exopolysaccharides and quorum sensing-related proteins. This result was further supported by relative gene expression analysis. In addition, the compound AC4 can also increase membrane permeability, induce intracellular reactive oxygen species (ROS) levels to rise, and cause the surface of Xoo to change. The compound AC4 can be further studied as a potential antibacterial agent and this structure will continue to be optimized.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;