A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-02-11 DOI:10.1186/s12859-025-06051-1
Luke Kennedy, Jagdeep K Sandhu, Mary-Ellen Harper, Miroslava Cuperlovic-Culf
{"title":"A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers.","authors":"Luke Kennedy, Jagdeep K Sandhu, Mary-Ellen Harper, Miroslava Cuperlovic-Culf","doi":"10.1186/s12859-025-06051-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alterations of metabolism, including changes in mitochondrial metabolism as well as glutathione (GSH) metabolism are a well appreciated hallmark of many cancers. Mitochondrial GSH (mGSH) transport is a poorly characterized aspect of GSH metabolism, which we investigate in the context of cancer. Existing functional annotation approaches from machine (ML) or deep learning (DL) models based only on protein sequences, were unable to annotate functions in biological contexts.</p><p><strong>Results: </strong>We develop a flexible ML framework for functional annotation from diverse feature data. This hybrid ML framework leverages cancer cell line multi-omics data and other biological knowledge data as features, to uncover potential genes involved in mGSH metabolism and membrane transport in cancers. This framework achieves strong performance across functional annotation tasks and several cell line and primary tumor cancer samples. For our application, classification models predict the known mGSH transporter SLC25A39 but not SLC25A40 as being highly probably related to mGSH metabolism in cancers. SLC25A10, SLC25A50, and orphan SLC25A24, SLC25A43 are predicted to be associated with mGSH metabolism in multiple biological contexts and structural analysis of these proteins reveal similarities in potential substrate binding regions to the binding residues of SLC25A39.</p><p><strong>Conclusion: </strong>These findings have implications for a better understanding of cancer cell metabolism and novel therapeutic targets with respect to GSH metabolism through potential novel functional annotations of genes. The hybrid ML framework proposed here can be applied to other biological function classifications or multi-omics datasets to generate hypotheses in various biological contexts. Code and a tutorial for generating models and predictions in this framework are available at: https://github.com/lkenn012/mGSH_cancerClassifiers .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"48"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06051-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alterations of metabolism, including changes in mitochondrial metabolism as well as glutathione (GSH) metabolism are a well appreciated hallmark of many cancers. Mitochondrial GSH (mGSH) transport is a poorly characterized aspect of GSH metabolism, which we investigate in the context of cancer. Existing functional annotation approaches from machine (ML) or deep learning (DL) models based only on protein sequences, were unable to annotate functions in biological contexts.

Results: We develop a flexible ML framework for functional annotation from diverse feature data. This hybrid ML framework leverages cancer cell line multi-omics data and other biological knowledge data as features, to uncover potential genes involved in mGSH metabolism and membrane transport in cancers. This framework achieves strong performance across functional annotation tasks and several cell line and primary tumor cancer samples. For our application, classification models predict the known mGSH transporter SLC25A39 but not SLC25A40 as being highly probably related to mGSH metabolism in cancers. SLC25A10, SLC25A50, and orphan SLC25A24, SLC25A43 are predicted to be associated with mGSH metabolism in multiple biological contexts and structural analysis of these proteins reveal similarities in potential substrate binding regions to the binding residues of SLC25A39.

Conclusion: These findings have implications for a better understanding of cancer cell metabolism and novel therapeutic targets with respect to GSH metabolism through potential novel functional annotations of genes. The hybrid ML framework proposed here can be applied to other biological function classifications or multi-omics datasets to generate hypotheses in various biological contexts. Code and a tutorial for generating models and predictions in this framework are available at: https://github.com/lkenn012/mGSH_cancerClassifiers .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
CoMIT: a bioinformatic pipeline for risk-based prediction of COVID-19 test inclusivity. A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers. HarmonizR: blocking and singular feature data adjustment improve runtime efficiency and data preservation. HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer. Mammalian piRNA target prediction using a hierarchical attention model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1