HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-02-11 DOI:10.1186/s12859-025-06071-x
Yao Sun, Jing Gao
{"title":"HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer.","authors":"Yao Sun, Jing Gao","doi":"10.1186/s12859-025-06071-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gene regulatory networks (GRNs) involve complex regulatory relationships between genes and play important roles in the study of various biological systems and diseases. The introduction of single-cell sequencing (scRNA-seq) technology has allowed gene regulation studies to be carried out on specific cell types, providing the opportunity to accurately infer gene regulatory networks. However, the sparsity and noise problems of single-cell sequencing data pose challenges for gene regulatory network inference, and although many gene regulatory network inference methods have been proposed, they often fail to eliminate transitive interactions or do not address multilevel relationships and nonlinear features in the graph data well.</p><p><strong>Results: </strong>On the basis of the above limitations, we propose a gene regulatory network inference framework named HGATLink. HGATLink combines the heterogeneous graph attention network and simplified transformer to capture complex interactions effectively between genes in low-dimensional space via matrix decomposition techniques, which not only enhances the ability to model complex heterogeneous graph structures and alleviate transitive interactions, but also effectively captures the long-range dependencies between genes to ensure more accurate prediction.</p><p><strong>Conclusions: </strong>Compared with 10 state-of-the-art GRN inference methods on 14 scRNA-seq datasets under two metrics, AUROC and AUPRC, HGATLink shows good stability and accuracy in gene regulatory network inference tasks.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"49"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06071-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gene regulatory networks (GRNs) involve complex regulatory relationships between genes and play important roles in the study of various biological systems and diseases. The introduction of single-cell sequencing (scRNA-seq) technology has allowed gene regulation studies to be carried out on specific cell types, providing the opportunity to accurately infer gene regulatory networks. However, the sparsity and noise problems of single-cell sequencing data pose challenges for gene regulatory network inference, and although many gene regulatory network inference methods have been proposed, they often fail to eliminate transitive interactions or do not address multilevel relationships and nonlinear features in the graph data well.

Results: On the basis of the above limitations, we propose a gene regulatory network inference framework named HGATLink. HGATLink combines the heterogeneous graph attention network and simplified transformer to capture complex interactions effectively between genes in low-dimensional space via matrix decomposition techniques, which not only enhances the ability to model complex heterogeneous graph structures and alleviate transitive interactions, but also effectively captures the long-range dependencies between genes to ensure more accurate prediction.

Conclusions: Compared with 10 state-of-the-art GRN inference methods on 14 scRNA-seq datasets under two metrics, AUROC and AUPRC, HGATLink shows good stability and accuracy in gene regulatory network inference tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
CoMIT: a bioinformatic pipeline for risk-based prediction of COVID-19 test inclusivity. A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers. HarmonizR: blocking and singular feature data adjustment improve runtime efficiency and data preservation. HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer. Mammalian piRNA target prediction using a hierarchical attention model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1