Mammalian piRNA target prediction using a hierarchical attention model.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-02-11 DOI:10.1186/s12859-025-06068-6
Tianjiao Zhang, Liang Chen, Haibin Zhu, Garry Wong
{"title":"Mammalian piRNA target prediction using a hierarchical attention model.","authors":"Tianjiao Zhang, Liang Chen, Haibin Zhu, Garry Wong","doi":"10.1186/s12859-025-06068-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Piwi-interacting RNAs (piRNAs) are well established for monitoring and protecting the genome from transposons in germline cells. Recently, numerous studies provided evidence that piRNAs also play important roles in regulating mRNA transcript levels. Despite their significant role in regulating cellular RNA levels, the piRNA targeting rules are not well defined, especially in mammals, which poses obstacles to the elucidation of piRNA function.</p><p><strong>Results: </strong>Given the complexity and current limitation in understanding the mammalian piRNA targeting rules, we designed a deep learning model by selecting appropriate deep learning sub-networks based on the targeting patterns of piRNA inferred from previous experiments. Additionally, to alleviate the problem of insufficient data, a transfer learning approach was employed. Our model achieves a good discriminatory power (Accuracy: 98.5%) in predicting an independent test dataset. Finally, this model was utilized to predict the targets of all mouse and human piRNAs available in the piRNA database.</p><p><strong>Conclusions: </strong>In this research, we developed a deep learning framework that significantly advances the prediction of piRNA targets, overcoming the limitations posed by insufficient data and current incomplete targeting rules. The piRNA target prediction network and results can be downloaded from https://github.com/SofiaTianjiaoZhang/piRNATarget .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"50"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06068-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Piwi-interacting RNAs (piRNAs) are well established for monitoring and protecting the genome from transposons in germline cells. Recently, numerous studies provided evidence that piRNAs also play important roles in regulating mRNA transcript levels. Despite their significant role in regulating cellular RNA levels, the piRNA targeting rules are not well defined, especially in mammals, which poses obstacles to the elucidation of piRNA function.

Results: Given the complexity and current limitation in understanding the mammalian piRNA targeting rules, we designed a deep learning model by selecting appropriate deep learning sub-networks based on the targeting patterns of piRNA inferred from previous experiments. Additionally, to alleviate the problem of insufficient data, a transfer learning approach was employed. Our model achieves a good discriminatory power (Accuracy: 98.5%) in predicting an independent test dataset. Finally, this model was utilized to predict the targets of all mouse and human piRNAs available in the piRNA database.

Conclusions: In this research, we developed a deep learning framework that significantly advances the prediction of piRNA targets, overcoming the limitations posed by insufficient data and current incomplete targeting rules. The piRNA target prediction network and results can be downloaded from https://github.com/SofiaTianjiaoZhang/piRNATarget .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
CoMIT: a bioinformatic pipeline for risk-based prediction of COVID-19 test inclusivity. A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers. HarmonizR: blocking and singular feature data adjustment improve runtime efficiency and data preservation. HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer. Mammalian piRNA target prediction using a hierarchical attention model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1