{"title":"Skin Aging: Insights into the Role of Fatty Acids.","authors":"Snehal Kshirsagar, Asha Thomas, Sanjeevani Deshkar, Lata Kothapalli, Trupti Borhade, Sohan Chitlange, Avinash Sanap, Ramesh Bhonde","doi":"10.2174/0113816128357677250116115754","DOIUrl":null,"url":null,"abstract":"<p><p>The human skin, being the largest organ, provides defense against bacteria, toxins, and ultraviolet radiation. The skin may experience changes like dryness, photodamage, oxidative damage, and inflammation. This review explores sources of fatty acids and how they can prevent skin damage, with the goal of determining their potential for preventing skin aging. The role and significance of various mechanistic pathways and molecular targets involved in skin aging are highlighted. By using current research findings, this review contributes to a comprehensive understanding of how fatty acids may serve as a proactive approach to promoting youthful skin and mitigating the signs of skin aging. In addition to treating specific skin conditions, nutraceuticals offer immense potential to minimize, postpone, or prevent premature skin aging. The substances that are most frequently employed include carotenoids, polyunsaturated fatty acids, plant polyphenols, bioactive peptides, oligosaccharides, and vitamins. Numerous human trials have demonstrated the impact of supplementing with these items on indicators of aging. The most pertinent clinical and non-clinical investigations are assessed in this review. Based on the comprehensive understanding of the significant role of fatty acids in addressing skin aging, this review may open doors and offer avenues for future explorations.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128357677250116115754","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The human skin, being the largest organ, provides defense against bacteria, toxins, and ultraviolet radiation. The skin may experience changes like dryness, photodamage, oxidative damage, and inflammation. This review explores sources of fatty acids and how they can prevent skin damage, with the goal of determining their potential for preventing skin aging. The role and significance of various mechanistic pathways and molecular targets involved in skin aging are highlighted. By using current research findings, this review contributes to a comprehensive understanding of how fatty acids may serve as a proactive approach to promoting youthful skin and mitigating the signs of skin aging. In addition to treating specific skin conditions, nutraceuticals offer immense potential to minimize, postpone, or prevent premature skin aging. The substances that are most frequently employed include carotenoids, polyunsaturated fatty acids, plant polyphenols, bioactive peptides, oligosaccharides, and vitamins. Numerous human trials have demonstrated the impact of supplementing with these items on indicators of aging. The most pertinent clinical and non-clinical investigations are assessed in this review. Based on the comprehensive understanding of the significant role of fatty acids in addressing skin aging, this review may open doors and offer avenues for future explorations.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.