Wenlong Li , Linzheng Ye , XiJing Zhu , Yao Liu , Jialong Wu , Shida Chuai , Zexiao Wang
{"title":"Experimental study of acoustically induced hydroxyl radicals in hydrogen peroxide systems based on fluorescence analysis","authors":"Wenlong Li , Linzheng Ye , XiJing Zhu , Yao Liu , Jialong Wu , Shida Chuai , Zexiao Wang","doi":"10.1016/j.cep.2025.110219","DOIUrl":null,"url":null,"abstract":"<div><div>The hydroxyl radical (·OH), an extremely reactive oxidizing agent, can interact with both brittle and hard materials, such as single-crystal silicon carbide (SiC), facilitating material removal via ultrasonic-assisted chemical mechanical polishing (UCMP). It is crucial to explore the generation mechanism of acoustically induced ·OH radicals within the UCMP process. This study investigated the influence of ultrasonic duration, initial solution temperature, frequency, power, and initial hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration on the ·OH radical yield in the H<sub>2</sub>O<sub>2</sub> system based on fluorescence analysis. Furthermore, it elucidates the quantitative relationships between the parameters and ·OH radical generation. The experimental data showed that ultrasonic vibrations significantly enhanced the decomposition of H<sub>2</sub>O<sub>2</sub>, with the ultrasonic duration being key to ·OH radical production, increasing 32.42 times in 30 min without a water-bath. Water-bath conditions reduce the thermal effects, yielding ·OH at a rate of 0.1826. The initial temperature had little impact within a specific range, and the peaking ·OH yield increased at 0.0662 from 20 to 50 °C. Lower frequencies and higher powers enhanced the ·OH yield by 5.37 to 10.126 times. Low H<sub>2</sub>O<sub>2</sub> concentrations produced high ·OH radicals, peaking at 3.753 μmol/L at 1.5 wt%. These results are vital for improving UCMP efficiency and surface quality.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110219"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000686","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The hydroxyl radical (·OH), an extremely reactive oxidizing agent, can interact with both brittle and hard materials, such as single-crystal silicon carbide (SiC), facilitating material removal via ultrasonic-assisted chemical mechanical polishing (UCMP). It is crucial to explore the generation mechanism of acoustically induced ·OH radicals within the UCMP process. This study investigated the influence of ultrasonic duration, initial solution temperature, frequency, power, and initial hydrogen peroxide (H2O2) concentration on the ·OH radical yield in the H2O2 system based on fluorescence analysis. Furthermore, it elucidates the quantitative relationships between the parameters and ·OH radical generation. The experimental data showed that ultrasonic vibrations significantly enhanced the decomposition of H2O2, with the ultrasonic duration being key to ·OH radical production, increasing 32.42 times in 30 min without a water-bath. Water-bath conditions reduce the thermal effects, yielding ·OH at a rate of 0.1826. The initial temperature had little impact within a specific range, and the peaking ·OH yield increased at 0.0662 from 20 to 50 °C. Lower frequencies and higher powers enhanced the ·OH yield by 5.37 to 10.126 times. Low H2O2 concentrations produced high ·OH radicals, peaking at 3.753 μmol/L at 1.5 wt%. These results are vital for improving UCMP efficiency and surface quality.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.