Saurabh Jain;Bijoy Dripta Barua Chowdhury;Jarrod M. Mosier;Vignesh Subbian;Kate Hughes;Young-Jun Son
{"title":"Design and Development of an Integrated Virtual Reality (VR)-Based Training System for Difficult Airway Management","authors":"Saurabh Jain;Bijoy Dripta Barua Chowdhury;Jarrod M. Mosier;Vignesh Subbian;Kate Hughes;Young-Jun Son","doi":"10.1109/JTEHM.2025.3529748","DOIUrl":null,"url":null,"abstract":"For over 40 years, airway management simulation has been a cornerstone of medical training, aiming to reduce procedural risks for critically ill patients. However, existing simulation technologies often lack the versatility and realism needed to replicate the cognitive and physical challenges of complex airway management scenarios. We developed a novel Virtual Reality (VR)-based simulation system designed to enhance immersive airway management training and research. This system integrates physical and virtual environments with an external sensory framework to capture high-fidelity data on user performance. Advanced calibration techniques ensure precise positional tracking and realistic physics-based interactions, providing a cohesive mixed-reality experience. Validation studies conducted in a dedicated medical training center demonstrated the system’s effectiveness in replicating real-world conditions. Positional calibration accuracy was achieved within 0.1 cm, with parameter calibrations showing no significant discrepancies. Validation using Pre- and post-simulation surveys indicated positive feedback on training aspects, perceived usefulness, and ease of use. These results suggest that the system offers a significant improvement in procedural and cognitive training for high-stakes medical environments.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"49-60"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841389","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10841389/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For over 40 years, airway management simulation has been a cornerstone of medical training, aiming to reduce procedural risks for critically ill patients. However, existing simulation technologies often lack the versatility and realism needed to replicate the cognitive and physical challenges of complex airway management scenarios. We developed a novel Virtual Reality (VR)-based simulation system designed to enhance immersive airway management training and research. This system integrates physical and virtual environments with an external sensory framework to capture high-fidelity data on user performance. Advanced calibration techniques ensure precise positional tracking and realistic physics-based interactions, providing a cohesive mixed-reality experience. Validation studies conducted in a dedicated medical training center demonstrated the system’s effectiveness in replicating real-world conditions. Positional calibration accuracy was achieved within 0.1 cm, with parameter calibrations showing no significant discrepancies. Validation using Pre- and post-simulation surveys indicated positive feedback on training aspects, perceived usefulness, and ease of use. These results suggest that the system offers a significant improvement in procedural and cognitive training for high-stakes medical environments.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.