{"title":"Multi-Branch CNN-LSTM Fusion Network-Driven System With BERT Semantic Evaluator for Radiology Reporting in Emergency Head CTs","authors":"Selene Tomassini;Damiano Duranti;Abdallah Zeggada;Carlo Cosimo Quattrocchi;Farid Melgani;Paolo Giorgini","doi":"10.1109/JTEHM.2025.3535676","DOIUrl":null,"url":null,"abstract":"The high volume of emergency room patients often necessitates head CT examinations to rule out ischemic, hemorrhagic, or other organic pathologies. A system that enhances the diagnostic efficacy of head CT imaging in emergency settings through structured reporting would significantly improve clinical decision making. Currently, no AI solutions address this need. Thus, our research aims to develop an automatic radiology reporting system by directly analyzing brain anomalies in head CT data. We propose a multi-branch CNN-LSTM fusion network-driven system for enhanced radiology reporting in emergency settings. We preprocessed head CT scans by resizing all slices, selecting those with significant variability, and applying PCA to retain 95% of the original data variance, ultimately saving the most representative five slices for each scan. We linked the reports to their respective slice IDs, divided them into individual captions, and preprocessed each. We performed an 80-20 split of the dataset for ten times, with 15% of the training set used for validation. Our model utilizes a pretrained VGG16, processing groups of five slices simultaneously, and features multiple end-to-end LSTM branches, each specialized in predicting one caption, subsequently combined to form the ordered reports after a BERT-based semantic evaluation. Our system demonstrates effectiveness and stability, with the postprocessing stage refining the syntax of the generated descriptions. However, there remains an opportunity to empower the evaluation framework to more accurately assess the clinical relevance of the automatically-written reports. Part of future work will include transitioning to 3D and developing an improved version based on vision-language models.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"61-74"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856282","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856282/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The high volume of emergency room patients often necessitates head CT examinations to rule out ischemic, hemorrhagic, or other organic pathologies. A system that enhances the diagnostic efficacy of head CT imaging in emergency settings through structured reporting would significantly improve clinical decision making. Currently, no AI solutions address this need. Thus, our research aims to develop an automatic radiology reporting system by directly analyzing brain anomalies in head CT data. We propose a multi-branch CNN-LSTM fusion network-driven system for enhanced radiology reporting in emergency settings. We preprocessed head CT scans by resizing all slices, selecting those with significant variability, and applying PCA to retain 95% of the original data variance, ultimately saving the most representative five slices for each scan. We linked the reports to their respective slice IDs, divided them into individual captions, and preprocessed each. We performed an 80-20 split of the dataset for ten times, with 15% of the training set used for validation. Our model utilizes a pretrained VGG16, processing groups of five slices simultaneously, and features multiple end-to-end LSTM branches, each specialized in predicting one caption, subsequently combined to form the ordered reports after a BERT-based semantic evaluation. Our system demonstrates effectiveness and stability, with the postprocessing stage refining the syntax of the generated descriptions. However, there remains an opportunity to empower the evaluation framework to more accurately assess the clinical relevance of the automatically-written reports. Part of future work will include transitioning to 3D and developing an improved version based on vision-language models.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.