Multi-Branch CNN-LSTM Fusion Network-Driven System With BERT Semantic Evaluator for Radiology Reporting in Emergency Head CTs

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Journal of Translational Engineering in Health and Medicine-Jtehm Pub Date : 2025-01-28 DOI:10.1109/JTEHM.2025.3535676
Selene Tomassini;Damiano Duranti;Abdallah Zeggada;Carlo Cosimo Quattrocchi;Farid Melgani;Paolo Giorgini
{"title":"Multi-Branch CNN-LSTM Fusion Network-Driven System With BERT Semantic Evaluator for Radiology Reporting in Emergency Head CTs","authors":"Selene Tomassini;Damiano Duranti;Abdallah Zeggada;Carlo Cosimo Quattrocchi;Farid Melgani;Paolo Giorgini","doi":"10.1109/JTEHM.2025.3535676","DOIUrl":null,"url":null,"abstract":"The high volume of emergency room patients often necessitates head CT examinations to rule out ischemic, hemorrhagic, or other organic pathologies. A system that enhances the diagnostic efficacy of head CT imaging in emergency settings through structured reporting would significantly improve clinical decision making. Currently, no AI solutions address this need. Thus, our research aims to develop an automatic radiology reporting system by directly analyzing brain anomalies in head CT data. We propose a multi-branch CNN-LSTM fusion network-driven system for enhanced radiology reporting in emergency settings. We preprocessed head CT scans by resizing all slices, selecting those with significant variability, and applying PCA to retain 95% of the original data variance, ultimately saving the most representative five slices for each scan. We linked the reports to their respective slice IDs, divided them into individual captions, and preprocessed each. We performed an 80-20 split of the dataset for ten times, with 15% of the training set used for validation. Our model utilizes a pretrained VGG16, processing groups of five slices simultaneously, and features multiple end-to-end LSTM branches, each specialized in predicting one caption, subsequently combined to form the ordered reports after a BERT-based semantic evaluation. Our system demonstrates effectiveness and stability, with the postprocessing stage refining the syntax of the generated descriptions. However, there remains an opportunity to empower the evaluation framework to more accurately assess the clinical relevance of the automatically-written reports. Part of future work will include transitioning to 3D and developing an improved version based on vision-language models.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"61-74"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856282","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10856282/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The high volume of emergency room patients often necessitates head CT examinations to rule out ischemic, hemorrhagic, or other organic pathologies. A system that enhances the diagnostic efficacy of head CT imaging in emergency settings through structured reporting would significantly improve clinical decision making. Currently, no AI solutions address this need. Thus, our research aims to develop an automatic radiology reporting system by directly analyzing brain anomalies in head CT data. We propose a multi-branch CNN-LSTM fusion network-driven system for enhanced radiology reporting in emergency settings. We preprocessed head CT scans by resizing all slices, selecting those with significant variability, and applying PCA to retain 95% of the original data variance, ultimately saving the most representative five slices for each scan. We linked the reports to their respective slice IDs, divided them into individual captions, and preprocessed each. We performed an 80-20 split of the dataset for ten times, with 15% of the training set used for validation. Our model utilizes a pretrained VGG16, processing groups of five slices simultaneously, and features multiple end-to-end LSTM branches, each specialized in predicting one caption, subsequently combined to form the ordered reports after a BERT-based semantic evaluation. Our system demonstrates effectiveness and stability, with the postprocessing stage refining the syntax of the generated descriptions. However, there remains an opportunity to empower the evaluation framework to more accurately assess the clinical relevance of the automatically-written reports. Part of future work will include transitioning to 3D and developing an improved version based on vision-language models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
期刊最新文献
Cross-Modal Augmented Transformer for Automated Medical Report Generation Multi-Branch CNN-LSTM Fusion Network-Driven System With BERT Semantic Evaluator for Radiology Reporting in Emergency Head CTs Intelligent Neonatal Blood Perfusion Assessment System Based on Near-Infrared Spectroscopy Design and Development of an Integrated Virtual Reality (VR)-Based Training System for Difficult Airway Management Fusion Model Using Resting Neurophysiological Data to Help Mass Screening of Methamphetamine Use Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1