Multi-Taxon Predictions of Deep-Sea Corals and Sponges From Stacked Species Distribution Models in the United States West Coast Exclusive Economic Zone and Relation to Trawl Closure Zones

IF 4.6 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Diversity and Distributions Pub Date : 2025-02-13 DOI:10.1111/ddi.70005
Arvind Shantharam, Matthew Poti, Arliss Winship, Yee Lau, Heather Coleman, Danielle Weissman, Renee Eaton, Robert McGuinn, Just Cebrian, Thomas Hourigan
{"title":"Multi-Taxon Predictions of Deep-Sea Corals and Sponges From Stacked Species Distribution Models in the United States West Coast Exclusive Economic Zone and Relation to Trawl Closure Zones","authors":"Arvind Shantharam,&nbsp;Matthew Poti,&nbsp;Arliss Winship,&nbsp;Yee Lau,&nbsp;Heather Coleman,&nbsp;Danielle Weissman,&nbsp;Renee Eaton,&nbsp;Robert McGuinn,&nbsp;Just Cebrian,&nbsp;Thomas Hourigan","doi":"10.1111/ddi.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Abundant species distribution models (SDMs) of deep-sea corals and sponges (DSCS) allow one to make community-level predictions about DSCS. Pairing that with the conservation information of Vulnerable Marine Ecosystems (VMEs) due to their sensitivity to seafloor trawling, one can assess the efficacy of established seafloor protections, known as Essential Fish Habitat and Conservation Areas (trawl closure areas), in the United States West Coast on a multi-taxon basis. From this, we seek to answer the following questions: (1) can accurate multi-taxon, trawl-sensitive DSCS distribution predictions be made for the US West Coast and (2) to what extent do current trawl protections overlap with multi-taxon distribution predictions and what are the conservation and management implications?</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>United States West Coast marine waters.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A cluster analysis was run on 40 SDMs of DSCS, identifiable as VME indicators and assigned a VME indicator score based on criteria used by regional fisheries management organisations. SDMs of taxa in clusters were stacked and averaged to produce stacked SDM (S-SDM) prediction maps. All prediction maps were classified into five habitat suitability classes to facilitate interpretation. The total area within benthic ecoregion-bathymetric boundaries and the percentage overlap with the bottom trawl closure zone were computed for spatial contextualization and to determine protection coverage for S-SDMs, respectively.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Cluster analysis identified 10 groups that represent unique S-SDMs for the region. Taxa clustered together have previously been documented together in surveys but some novel associations are reported. Geographically, the predicted occurrences can range along the entire western continental margin, be highly restricted, or constrained by recognised biogeographic boundaries. VME indicator metrics ranged from low to moderate. When trawl coverage was computed relative to the suitability's prevalence in the modelling domain, trawl protection was shown to be large for the highest suitability classes for most of the S-SDMs.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Results indicate the clustering approach has some strengths in identifying known and documented associations between DSCS taxa but some are problematic and produce low to moderate VME indicator scores for S-SDMs, undercutting the conservation information the metric should convey. Coupled with the small predicted areas of the highest suitability classes, the wholesale recommendation for this approach for management purposes is difficult. We discuss avenues for methodological improvements.</p>\n </section>\n </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"31 2","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity and Distributions","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ddi.70005","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

Abundant species distribution models (SDMs) of deep-sea corals and sponges (DSCS) allow one to make community-level predictions about DSCS. Pairing that with the conservation information of Vulnerable Marine Ecosystems (VMEs) due to their sensitivity to seafloor trawling, one can assess the efficacy of established seafloor protections, known as Essential Fish Habitat and Conservation Areas (trawl closure areas), in the United States West Coast on a multi-taxon basis. From this, we seek to answer the following questions: (1) can accurate multi-taxon, trawl-sensitive DSCS distribution predictions be made for the US West Coast and (2) to what extent do current trawl protections overlap with multi-taxon distribution predictions and what are the conservation and management implications?

Location

United States West Coast marine waters.

Methods

A cluster analysis was run on 40 SDMs of DSCS, identifiable as VME indicators and assigned a VME indicator score based on criteria used by regional fisheries management organisations. SDMs of taxa in clusters were stacked and averaged to produce stacked SDM (S-SDM) prediction maps. All prediction maps were classified into five habitat suitability classes to facilitate interpretation. The total area within benthic ecoregion-bathymetric boundaries and the percentage overlap with the bottom trawl closure zone were computed for spatial contextualization and to determine protection coverage for S-SDMs, respectively.

Results

Cluster analysis identified 10 groups that represent unique S-SDMs for the region. Taxa clustered together have previously been documented together in surveys but some novel associations are reported. Geographically, the predicted occurrences can range along the entire western continental margin, be highly restricted, or constrained by recognised biogeographic boundaries. VME indicator metrics ranged from low to moderate. When trawl coverage was computed relative to the suitability's prevalence in the modelling domain, trawl protection was shown to be large for the highest suitability classes for most of the S-SDMs.

Main Conclusions

Results indicate the clustering approach has some strengths in identifying known and documented associations between DSCS taxa but some are problematic and produce low to moderate VME indicator scores for S-SDMs, undercutting the conservation information the metric should convey. Coupled with the small predicted areas of the highest suitability classes, the wholesale recommendation for this approach for management purposes is difficult. We discuss avenues for methodological improvements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diversity and Distributions
Diversity and Distributions 环境科学-生态学
CiteScore
8.90
自引率
4.30%
发文量
195
审稿时长
8-16 weeks
期刊介绍: Diversity and Distributions is a journal of conservation biogeography. We publish papers that deal with the application of biogeographical principles, theories, and analyses (being those concerned with the distributional dynamics of taxa and assemblages) to problems concerning the conservation of biodiversity. We no longer consider papers the sole aim of which is to describe or analyze patterns of biodiversity or to elucidate processes that generate biodiversity.
期刊最新文献
Spatial Modelling Approaches for Estimating Richness of Benthic Invertebrates Throughout New Zealand Waters Genomic Assessment of Australian White Sharks (Carcharodon carcharias) Challenges Previous Evidence of Population Subdivision Multi-Taxon Predictions of Deep-Sea Corals and Sponges From Stacked Species Distribution Models in the United States West Coast Exclusive Economic Zone and Relation to Trawl Closure Zones Historical Demographic Determinants Complement Climate Model Predictions of Co-Occurring Cryptic Species Hunting and Habitat Destruction Drive Widespread Functional Declines of Top Predators in a Global Deforestation Hotspot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1