Spatial Modelling Approaches for Estimating Richness of Benthic Invertebrates Throughout New Zealand Waters

IF 4.6 2区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Diversity and Distributions Pub Date : 2025-02-18 DOI:10.1111/ddi.70006
Tom Brough, Fabrice Stephenson, Eva Leunissen, Carolyn Lundquist
{"title":"Spatial Modelling Approaches for Estimating Richness of Benthic Invertebrates Throughout New Zealand Waters","authors":"Tom Brough,&nbsp;Fabrice Stephenson,&nbsp;Eva Leunissen,&nbsp;Carolyn Lundquist","doi":"10.1111/ddi.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Understanding the distribution of marine biodiversity is critical for evidence-based identification of areas for protection and restoration. Taxonomic richness is a key, intuitive component of biodiversity and is often used to guide marine spatial planning and protection. In this study, we explore the relative merits of two spatial modelling approaches, stacked species distribution models (S-SDMs) and macro-ecological models (MEMs), for mapping the richness of benthic invertebrate taxa.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>New Zealand Exclusive Economic Zone.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Two hundred and seven individual layers from SDMs of benthic invertebrate genera were pooled from an existing database and stacked to create a single genera richness layer. The same occurrence data used to develop the SDMs, comprising over 120k occurrences, was used to fit MEMs using an ensemble modelling approach.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The S-SDM layer performed poorly when validated against a database of observed genera richness, while the MEM approach performed well. While there were some consistencies in the areas predicted as high richness, substantial differences between the methods were also apparent, with the MEM seemingly better able to discern nuanced, fine-scale patterns in richness. Areas of high richness predicted by the MEM include parts of the Chatham Rise, a large component of the sub-Antarctic region, continental-shelf and coastal habitat in the south of the South Island, the north-east coast of the North Island, around East Cape and the Kermadec, Lau-Colville and Macquarie Ridges.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Spatial and catchability biases in the underlying occurrence data may contribute to the poor performance of the S-SDM and suggest the approach may not be appropriate when using occurrence datasets with limited systematic sampling. The predictions from the MEM provide the best available information for the distribution of benthic invertebrate richness for New Zealand waters and thus offer important information for current and future marine spatial planning processes.</p>\n </section>\n </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"31 2","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.70006","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diversity and Distributions","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ddi.70006","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

Understanding the distribution of marine biodiversity is critical for evidence-based identification of areas for protection and restoration. Taxonomic richness is a key, intuitive component of biodiversity and is often used to guide marine spatial planning and protection. In this study, we explore the relative merits of two spatial modelling approaches, stacked species distribution models (S-SDMs) and macro-ecological models (MEMs), for mapping the richness of benthic invertebrate taxa.

Location

New Zealand Exclusive Economic Zone.

Methods

Two hundred and seven individual layers from SDMs of benthic invertebrate genera were pooled from an existing database and stacked to create a single genera richness layer. The same occurrence data used to develop the SDMs, comprising over 120k occurrences, was used to fit MEMs using an ensemble modelling approach.

Results

The S-SDM layer performed poorly when validated against a database of observed genera richness, while the MEM approach performed well. While there were some consistencies in the areas predicted as high richness, substantial differences between the methods were also apparent, with the MEM seemingly better able to discern nuanced, fine-scale patterns in richness. Areas of high richness predicted by the MEM include parts of the Chatham Rise, a large component of the sub-Antarctic region, continental-shelf and coastal habitat in the south of the South Island, the north-east coast of the North Island, around East Cape and the Kermadec, Lau-Colville and Macquarie Ridges.

Main Conclusions

Spatial and catchability biases in the underlying occurrence data may contribute to the poor performance of the S-SDM and suggest the approach may not be appropriate when using occurrence datasets with limited systematic sampling. The predictions from the MEM provide the best available information for the distribution of benthic invertebrate richness for New Zealand waters and thus offer important information for current and future marine spatial planning processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diversity and Distributions
Diversity and Distributions 环境科学-生态学
CiteScore
8.90
自引率
4.30%
发文量
195
审稿时长
8-16 weeks
期刊介绍: Diversity and Distributions is a journal of conservation biogeography. We publish papers that deal with the application of biogeographical principles, theories, and analyses (being those concerned with the distributional dynamics of taxa and assemblages) to problems concerning the conservation of biodiversity. We no longer consider papers the sole aim of which is to describe or analyze patterns of biodiversity or to elucidate processes that generate biodiversity.
期刊最新文献
Widespread and Diverging Patterns of Change in Local Phylogenetic Diversity Spatial Modelling Approaches for Estimating Richness of Benthic Invertebrates Throughout New Zealand Waters Genomic Assessment of Australian White Sharks (Carcharodon carcharias) Challenges Previous Evidence of Population Subdivision Multi-Taxon Predictions of Deep-Sea Corals and Sponges From Stacked Species Distribution Models in the United States West Coast Exclusive Economic Zone and Relation to Trawl Closure Zones Historical Demographic Determinants Complement Climate Model Predictions of Co-Occurring Cryptic Species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1