Analysis of the Alkaline Resistance Mechanism of Halomonas alkalicola CICC 11012 s by Proteomics and Metabolomics.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Current Microbiology Pub Date : 2025-02-13 DOI:10.1007/s00284-024-04056-2
Ruina Liu, Qi Han, Geer Lin, Shuaicheng Mu, Shuang Liu, Su Yao, Lei Zhai
{"title":"Analysis of the Alkaline Resistance Mechanism of Halomonas alkalicola CICC 11012 s by Proteomics and Metabolomics.","authors":"Ruina Liu, Qi Han, Geer Lin, Shuaicheng Mu, Shuang Liu, Su Yao, Lei Zhai","doi":"10.1007/s00284-024-04056-2","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, as excellent industrial microorganisms, Halomonas has become a potential chassis cell of the next generation of industrial biotechnology because of its advantages of low complexity, antipollution ability, and rapid fermentation. Therefore, there is an urgent need to study the genome information, synthetic biology, multiomics, and other technologies of Halomonas, and it is also highly important to study its tolerance to extreme environments. Halomonas alkalicola CICC 11012 s is the most alkaliphilic bacterium in the genus Halomonas and is an excellent alkali-resistant bacterium that was independently isolated in our laboratory; this bacterium plays a certain role in industrial pollution control and the application of synthetic biology chassis cells. The H. alkalicola mutant was designed and constructed via CRISPR technology in the early stage of this experiment, which verified that the tonb gene plays an important role in the alkali resistance mechanism of this strain. Therefore, the molecular mechanism of the response of H. alkalicola CICC 11012 s to alkaline stress was explored through combined proteomic and metabolomic analysis. The experimental results revealed that the wild-type and mutant strains evolved multilevel adaptive strategies to regulate pH homeostasis in response to alkaline stress, including increasing their membrane transport activities and synthesizing carbohydrates and amino acids. In summary, the experimental results provide a deep understanding of the alkaline response mechanism of alkalophilic bacteria, thereby further promoting their application in different environments.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 4","pages":"135"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04056-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, as excellent industrial microorganisms, Halomonas has become a potential chassis cell of the next generation of industrial biotechnology because of its advantages of low complexity, antipollution ability, and rapid fermentation. Therefore, there is an urgent need to study the genome information, synthetic biology, multiomics, and other technologies of Halomonas, and it is also highly important to study its tolerance to extreme environments. Halomonas alkalicola CICC 11012 s is the most alkaliphilic bacterium in the genus Halomonas and is an excellent alkali-resistant bacterium that was independently isolated in our laboratory; this bacterium plays a certain role in industrial pollution control and the application of synthetic biology chassis cells. The H. alkalicola mutant was designed and constructed via CRISPR technology in the early stage of this experiment, which verified that the tonb gene plays an important role in the alkali resistance mechanism of this strain. Therefore, the molecular mechanism of the response of H. alkalicola CICC 11012 s to alkaline stress was explored through combined proteomic and metabolomic analysis. The experimental results revealed that the wild-type and mutant strains evolved multilevel adaptive strategies to regulate pH homeostasis in response to alkaline stress, including increasing their membrane transport activities and synthesizing carbohydrates and amino acids. In summary, the experimental results provide a deep understanding of the alkaline response mechanism of alkalophilic bacteria, thereby further promoting their application in different environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
期刊最新文献
Analysis of the Alkaline Resistance Mechanism of Halomonas alkalicola CICC 11012 s by Proteomics and Metabolomics. Harnessing Plant-Derived Terpenoids for Novel Approaches in Combating Bacterial and Parasite Infections in Veterinary and Agricultural Settings. Screening of Regulatory mRNAs and miRNAs that Suppress Staphylococcus aureus Proliferation via Macrophage Ferroptosis. Comamonas squillarum sp. nov., Isolated from Intestine of Red Swamp Crayfish (Procambarus clarkii). Plant Growth-Promoting Potential of Colletotrichum sp. Isolated from Ocimum basilicum L. Leaves: A Broad-Spectrum Evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1