Corilagin Attenuates Neuronal Apoptosis and Ferroptosis of Parkinson's Disease through Regulating the TLR4/Src/NOX2 Signaling Pathway.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2025-02-14 DOI:10.1021/acschemneuro.5c00035
Yu Lei, Jiabin Zhou, Dongyuan Xu, Songshan Chai, Nanxiang Xiong
{"title":"Corilagin Attenuates Neuronal Apoptosis and Ferroptosis of Parkinson's Disease through Regulating the TLR4/Src/NOX2 Signaling Pathway.","authors":"Yu Lei, Jiabin Zhou, Dongyuan Xu, Songshan Chai, Nanxiang Xiong","doi":"10.1021/acschemneuro.5c00035","DOIUrl":null,"url":null,"abstract":"<p><p>Corilagin has shown neuroprotective potential in various neurological disorders, but its effects in Parkinson's disease (PD) have not been fully explored. In this study, we investigated the therapeutic impact and underlying mechanism of corilagin on PD using MPTP-induced mice and MPP<sup>+</sup>-treated N2a cells. Behavioral tests and immunohistochemical analysis demonstrated that corilagin significantly reduced MPTP-induced loss of TH-positive neurons in the substantia nigra. In vitro, corilagin improved cell viability, decreased MPP<sup>+</sup>-induced apoptosis, and mitigated the associated oxidative stress by lowering intracellular ROS levels and preserving mitochondrial membrane potential. Moreover, corilagin reversed MPP<sup>+</sup>-induced iron accumulation and lipid peroxidation in N2a cells. Mechanistically, Western blotting revealed that the protective effects of corilagin are linked to the TLR4/Src/NOX2 signaling pathway. The TLR4 agonist RS 09 impaired the neuroprotective effects of corilagin, further supporting its role in modulating ferroptosis via this pathway. These findings suggest that corilagin could be a promising therapeutic agent for PD by targeting the TLR4/Src/NOX2 signaling axis to inhibit ferroptosis.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00035","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Corilagin has shown neuroprotective potential in various neurological disorders, but its effects in Parkinson's disease (PD) have not been fully explored. In this study, we investigated the therapeutic impact and underlying mechanism of corilagin on PD using MPTP-induced mice and MPP+-treated N2a cells. Behavioral tests and immunohistochemical analysis demonstrated that corilagin significantly reduced MPTP-induced loss of TH-positive neurons in the substantia nigra. In vitro, corilagin improved cell viability, decreased MPP+-induced apoptosis, and mitigated the associated oxidative stress by lowering intracellular ROS levels and preserving mitochondrial membrane potential. Moreover, corilagin reversed MPP+-induced iron accumulation and lipid peroxidation in N2a cells. Mechanistically, Western blotting revealed that the protective effects of corilagin are linked to the TLR4/Src/NOX2 signaling pathway. The TLR4 agonist RS 09 impaired the neuroprotective effects of corilagin, further supporting its role in modulating ferroptosis via this pathway. These findings suggest that corilagin could be a promising therapeutic agent for PD by targeting the TLR4/Src/NOX2 signaling axis to inhibit ferroptosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柯里拉京通过调节TLR4/Src/NOX2信号通路减轻帕金森病的神经元凋亡和铁凋亡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Anterior Cingulate Cortex-Anterior Insular Cortex Circuit Mediates Hyperalgesia in Adolescent Mice Experiencing Early Life Stress. Corilagin Attenuates Neuronal Apoptosis and Ferroptosis of Parkinson's Disease through Regulating the TLR4/Src/NOX2 Signaling Pathway. Effects of Transmembrane Phenylalanine Residues on γ-Secretase-Mediated Notch-1 Proteolysis. Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors. Neuroprotective Effect of Withaferin Derivatives toward MPP+ and 6-OHDA Toxicity to Dopaminergic Neurons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1