Combined deletion of cytosolic 5'-nucleotidases IA and II lowers glycemia by improving skeletal muscle insulin action and lowering hepatic glucose production.
Roxane Jacobs, Gaëtan Herinckx, Noémie Galland, Clémence Balty, Didier Vertommen, Mark H Rider, Manuel Johanns
{"title":"Combined deletion of cytosolic 5'-nucleotidases IA and II lowers glycemia by improving skeletal muscle insulin action and lowering hepatic glucose production.","authors":"Roxane Jacobs, Gaëtan Herinckx, Noémie Galland, Clémence Balty, Didier Vertommen, Mark H Rider, Manuel Johanns","doi":"10.1016/j.jbc.2025.108295","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity and type 2 diabetes (T2D)-linked hyperglycemia, along with their associated complications, have reached pandemic proportions, constituting a major public health issue. Genetic deletion or pharmacological inhibition of purine nucleotide-metabolizing enzymes has emerged as a potential strategy for treating diseases. We previously showed that cytosolic 5'-nucleotidase II (NT5C2)-deficient mice were protected against high-fat diet (HFD)-induced insulin resistance. This study investigated effects of dual deletion of cytosolic 5'-nucleotidases IA (NT5C1A) and II (NT5C2) in mice. We found that NT5C1A/NT5C2 double-knockout (NT5C-dKO) mice exhibited mild hypoglycemia, associated with enhanced skeletal muscle insulin action and reduced hepatic glucose production. This phenotype was accompanied by liver and skeletal muscle proteomic alterations notably related to amino acid metabolism, besides potential involvement of adenosine monophosphate (AMP)-activated protein kinase (AMPK). Our findings support the development of novel anti-diabetic treatments using small-molecule cytosolic 5'-nucleotidase inhibitors.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108295"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108295","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity and type 2 diabetes (T2D)-linked hyperglycemia, along with their associated complications, have reached pandemic proportions, constituting a major public health issue. Genetic deletion or pharmacological inhibition of purine nucleotide-metabolizing enzymes has emerged as a potential strategy for treating diseases. We previously showed that cytosolic 5'-nucleotidase II (NT5C2)-deficient mice were protected against high-fat diet (HFD)-induced insulin resistance. This study investigated effects of dual deletion of cytosolic 5'-nucleotidases IA (NT5C1A) and II (NT5C2) in mice. We found that NT5C1A/NT5C2 double-knockout (NT5C-dKO) mice exhibited mild hypoglycemia, associated with enhanced skeletal muscle insulin action and reduced hepatic glucose production. This phenotype was accompanied by liver and skeletal muscle proteomic alterations notably related to amino acid metabolism, besides potential involvement of adenosine monophosphate (AMP)-activated protein kinase (AMPK). Our findings support the development of novel anti-diabetic treatments using small-molecule cytosolic 5'-nucleotidase inhibitors.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.