Competing mechanisms of cement hydrates and anhydrous phases at ambient and 120 °C carbonation

IF 10.8 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Cement & concrete composites Pub Date : 2025-02-16 DOI:10.1016/j.cemconcomp.2025.105986
Hao Yu , Yi Jiang , Tung-Chai Ling
{"title":"Competing mechanisms of cement hydrates and anhydrous phases at ambient and 120 °C carbonation","authors":"Hao Yu ,&nbsp;Yi Jiang ,&nbsp;Tung-Chai Ling","doi":"10.1016/j.cemconcomp.2025.105986","DOIUrl":null,"url":null,"abstract":"<div><div>The carbonation of a fresh cement matrix involves several parallel reactions, including the hydration of anhydrous phases and the carbonation of both anhydrous phases and cement hydrates. This study aims to elucidate the competing mechanisms of anhydrous phases and cement hydrates during high-temperature carbonation. We comparatively investigate the behaviors of three representative precursors (a) fresh cement powder (as a composite system), (b) hydrated cement powder (representing cement hydrates), and (c) steel slag powder (representing anhydrous cement phases) under high-temperature (120 °C) carbonation. By differentiating the concurrent reactions occurring in the fresh cement system, the individual contribution of each material can be identified. The results show that carbonation occurs more significantly on cement hydrates than on anhydrous phases at ambient temperatures, but the trend reverses under high-temperature carbonation. Notably, dicalcium silicate (C<sub>2</sub>S) directly reacts with CO<sub>2</sub> at 120 °C within the fresh cement matrix, producing calcite and a highly polymerized calcium silicate hydrate (C-S-H) gel similar to that of steel slag. This reaction not only contributes to carbonation but also facilitates hydration through its nucleation effect. In contrast, for tricalcium silicate (C<sub>3</sub>S), hydration initiates first, followed by the carbonation of its resultant product, namely portlandite, and subsequently C-S-H.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"159 ","pages":"Article 105986"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095894652500068X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The carbonation of a fresh cement matrix involves several parallel reactions, including the hydration of anhydrous phases and the carbonation of both anhydrous phases and cement hydrates. This study aims to elucidate the competing mechanisms of anhydrous phases and cement hydrates during high-temperature carbonation. We comparatively investigate the behaviors of three representative precursors (a) fresh cement powder (as a composite system), (b) hydrated cement powder (representing cement hydrates), and (c) steel slag powder (representing anhydrous cement phases) under high-temperature (120 °C) carbonation. By differentiating the concurrent reactions occurring in the fresh cement system, the individual contribution of each material can be identified. The results show that carbonation occurs more significantly on cement hydrates than on anhydrous phases at ambient temperatures, but the trend reverses under high-temperature carbonation. Notably, dicalcium silicate (C2S) directly reacts with CO2 at 120 °C within the fresh cement matrix, producing calcite and a highly polymerized calcium silicate hydrate (C-S-H) gel similar to that of steel slag. This reaction not only contributes to carbonation but also facilitates hydration through its nucleation effect. In contrast, for tricalcium silicate (C3S), hydration initiates first, followed by the carbonation of its resultant product, namely portlandite, and subsequently C-S-H.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cement & concrete composites
Cement & concrete composites 工程技术-材料科学:复合
CiteScore
18.70
自引率
11.40%
发文量
459
审稿时长
65 days
期刊介绍: Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.
期刊最新文献
Editorial Board Reaction mechanisms of one-part and two-part slag-based binders activated by sodium carbonate and lime Competing mechanisms of cement hydrates and anhydrous phases at ambient and 120 °C carbonation Early-age hydration of accelerated low-carbon cements for digital fabrication Efficiency of steel fibers in geopolymer and Portland cement concrete: Comparative evaluation of fiber bonding and crack bridging stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1