Arnesh Das, Cedric Wenger, Lukas Walpen, Robert J. Flatt
{"title":"Early-age hydration of accelerated low-carbon cements for digital fabrication","authors":"Arnesh Das, Cedric Wenger, Lukas Walpen, Robert J. Flatt","doi":"10.1016/j.cemconcomp.2025.105991","DOIUrl":null,"url":null,"abstract":"<div><div>Digital fabrication processes with concrete offer several advantages compared to conventional processes, however, a major criticism with related concrete mixes has been with regard to their high cement paste content and consequent carbon footprint. One of the ways to address this is to reduce ordinary Portland cement (OPC) content in such mixes by using supplementary cementitious materials. This paper reports on such an approach for two different digital fabrication methods: digital casting system and 3D concrete printing. Results focus on the combined use of such low carbon blends with a calcium aluminate cement (CAC) based accelerator. Two such accelerators were studied: one being mainly crystalline based and the other mainly amorphous. Their performance is assessed at different temperatures. It is concluded that crystalline CAC is more suitable for applications above 20 °C while at temperature below 20 °C, amorphous CAC should be preferred. This paper also delves deeper into the effect of amorphous CAC on the hydration of tricalcium silicate present in OPC. It shows that the effect of amorphous CAC on that silicate depends on the OPC content of the system as well as on the type and amount of calcium sulfate used in the accelerator formulation.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"159 ","pages":"Article 105991"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946525000733","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Digital fabrication processes with concrete offer several advantages compared to conventional processes, however, a major criticism with related concrete mixes has been with regard to their high cement paste content and consequent carbon footprint. One of the ways to address this is to reduce ordinary Portland cement (OPC) content in such mixes by using supplementary cementitious materials. This paper reports on such an approach for two different digital fabrication methods: digital casting system and 3D concrete printing. Results focus on the combined use of such low carbon blends with a calcium aluminate cement (CAC) based accelerator. Two such accelerators were studied: one being mainly crystalline based and the other mainly amorphous. Their performance is assessed at different temperatures. It is concluded that crystalline CAC is more suitable for applications above 20 °C while at temperature below 20 °C, amorphous CAC should be preferred. This paper also delves deeper into the effect of amorphous CAC on the hydration of tricalcium silicate present in OPC. It shows that the effect of amorphous CAC on that silicate depends on the OPC content of the system as well as on the type and amount of calcium sulfate used in the accelerator formulation.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.