Iman Aslani, Mahdi Khatibi, Seyed Nezameddin Ashrafizadeh
{"title":"Optimizing the microchannel geometry for effective control of analyte band dispersion","authors":"Iman Aslani, Mahdi Khatibi, Seyed Nezameddin Ashrafizadeh","doi":"10.1016/j.cep.2025.110221","DOIUrl":null,"url":null,"abstract":"<div><div>Managing analyte band dispersion is a critical challenge in diagnostic systems, medical spectroscopy, chromatography, and drug delivery devices. Effective dispersion control ensures reliable measurements, enhanced resolution, heightened sensitivity, and improved system performance. This study emphasizes the importance of optimizing microchannel geometries, particularly curvature sections, to effectively control analyte band dispersion. To achieve this, four microchannel geometries, namely Type I to Type IV, each with distinct curvature differences, were analyzed to identify the optimal geometry with the lowest dispersion. Key parameters, including wall zeta potential, applied voltage, and the internal-to-external curvature radius ratio, were examined for their influence on dispersion. The finite element method was employed to solve the Laplace and Navier-Stokes equations for electric field and velocity distributions, while the unsteady-state diffusion-convection equation determined analyte concentration profiles. Results showed that dispersion reductions after optimization were 60 % for Type II, 48 % for Type III, and 32 % for Type IV microchannels, nevertheless for Type I microchannel dispersion remain constant after and before optimization about 70 %. Increasing the zeta potential from ζ = -0.1 V to ζ = -0.5 V led to a significant rise in dispersion from 25 % to 90 % post-optimization. Conversely, adjusting the curvature ratio R<sub>r</sub> from 0.1 to 0.5 decreased dispersion from 42 % to 15 %. These findings underscore the importance of precise dispersion control in advancing analytical systems such as lab-on-disk and lab-on-chip technologies. This research provides valuable insights for optimizing microchannel designs to enhance the performance and reliability of various analytical and diagnostic applications.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"210 ","pages":"Article 110221"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000704","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Managing analyte band dispersion is a critical challenge in diagnostic systems, medical spectroscopy, chromatography, and drug delivery devices. Effective dispersion control ensures reliable measurements, enhanced resolution, heightened sensitivity, and improved system performance. This study emphasizes the importance of optimizing microchannel geometries, particularly curvature sections, to effectively control analyte band dispersion. To achieve this, four microchannel geometries, namely Type I to Type IV, each with distinct curvature differences, were analyzed to identify the optimal geometry with the lowest dispersion. Key parameters, including wall zeta potential, applied voltage, and the internal-to-external curvature radius ratio, were examined for their influence on dispersion. The finite element method was employed to solve the Laplace and Navier-Stokes equations for electric field and velocity distributions, while the unsteady-state diffusion-convection equation determined analyte concentration profiles. Results showed that dispersion reductions after optimization were 60 % for Type II, 48 % for Type III, and 32 % for Type IV microchannels, nevertheless for Type I microchannel dispersion remain constant after and before optimization about 70 %. Increasing the zeta potential from ζ = -0.1 V to ζ = -0.5 V led to a significant rise in dispersion from 25 % to 90 % post-optimization. Conversely, adjusting the curvature ratio Rr from 0.1 to 0.5 decreased dispersion from 42 % to 15 %. These findings underscore the importance of precise dispersion control in advancing analytical systems such as lab-on-disk and lab-on-chip technologies. This research provides valuable insights for optimizing microchannel designs to enhance the performance and reliability of various analytical and diagnostic applications.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.