Tongwei Zhang , Longwu Liu , Xue Jiang , Ying Liu , Yong Han
{"title":"Effect of heat treatment on microstructure and mechanical properties of tungsten heavy alloy with a non-equiatomic Ni5.5Fe2.5CoCr high-entropy binder","authors":"Tongwei Zhang , Longwu Liu , Xue Jiang , Ying Liu , Yong Han","doi":"10.1016/j.ijrmhm.2025.107096","DOIUrl":null,"url":null,"abstract":"<div><div>Tungsten heavy alloys (WHAs) hold extensive and promising application prospects in the defense industry as well as the aerospace filed because of their high melting point, high strength, and low thermal expansion coefficient. However, the grain size of WHAs prepared by conventional liquid phase sintering is coarse, which limits the further improvement of their mechanical properties. Designing high-entropy alloys (HEAs) as the binder phase provides a novel way to inhibit tungsten grain coarsening and improve the properties of WHAs due to the hysteresis diffusion effect of HEAs. In our previous research, a fine-grain and ultrahigh-strength WHA with non-equiatomic Ni<sub>5.5</sub>Fe<sub>2.5</sub>CoCr HEA as the binder phase was designed and successfully fabricated through the spark plasma sintering (SPS)method. In this study, vacuum heat treatment was adopted to further enhance the strength - toughness matching performance of the material. A systematic investigation was carried out on the impacts of the heat treatment process on the microstructure and mechanical properties of the 90W-Ni<sub>5.5</sub>Fe<sub>2.5</sub>CoCr alloy. The results show that the single - heat - treatment process exerts little influence on the microstructure and properties of 90 W-Ni<sub>5.5</sub>Fe<sub>2.5</sub>CoCr alloy. In contrast, the two - step heat - treatment process can remarkably optimize the distribution of the precipitated phases within the alloy. This optimization effectively enhances the plasticity of the alloy. Specifically, the fracture elongation can be increased from approximately 10 % to around 16 %. Moreover, it has been discovered that dislocations are predominantly distributed at the interface between the binder phase and the W phase. This distribution pattern is conducive to promoting the plastic - deformation capacity of the alloy.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"128 ","pages":"Article 107096"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000617","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tungsten heavy alloys (WHAs) hold extensive and promising application prospects in the defense industry as well as the aerospace filed because of their high melting point, high strength, and low thermal expansion coefficient. However, the grain size of WHAs prepared by conventional liquid phase sintering is coarse, which limits the further improvement of their mechanical properties. Designing high-entropy alloys (HEAs) as the binder phase provides a novel way to inhibit tungsten grain coarsening and improve the properties of WHAs due to the hysteresis diffusion effect of HEAs. In our previous research, a fine-grain and ultrahigh-strength WHA with non-equiatomic Ni5.5Fe2.5CoCr HEA as the binder phase was designed and successfully fabricated through the spark plasma sintering (SPS)method. In this study, vacuum heat treatment was adopted to further enhance the strength - toughness matching performance of the material. A systematic investigation was carried out on the impacts of the heat treatment process on the microstructure and mechanical properties of the 90W-Ni5.5Fe2.5CoCr alloy. The results show that the single - heat - treatment process exerts little influence on the microstructure and properties of 90 W-Ni5.5Fe2.5CoCr alloy. In contrast, the two - step heat - treatment process can remarkably optimize the distribution of the precipitated phases within the alloy. This optimization effectively enhances the plasticity of the alloy. Specifically, the fracture elongation can be increased from approximately 10 % to around 16 %. Moreover, it has been discovered that dislocations are predominantly distributed at the interface between the binder phase and the W phase. This distribution pattern is conducive to promoting the plastic - deformation capacity of the alloy.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.