{"title":"Spark plasma sintering influence on microstructure and mechanical properties of Ti:Ta/carbonitride ceramic matrix composites","authors":"José Manuel Córdoba Gallego","doi":"10.1016/j.ijrmhm.2025.107094","DOIUrl":null,"url":null,"abstract":"<div><div>A mechanically induced self-sustaining reaction was carried out to synthesize a Ti<sub>0.9</sub>Ta<sub>0.1</sub>C<sub>0.5</sub>N<sub>0.5</sub>/Co powdered cermets, and then they were sintered by spark plasma sintering. Microstructural parameters effects studied by image analysis, and chemical composition (studied by Rietveld analysis) on the microhardness, hardening rate, fracture toughness, transverse rupture strength, and Young's modulus were related to the sintering conditions. The optimization of the sintering conditions (1150 °C, 30 MPa, and 8 min' dwell time) drove to a homogeneous microstructure and outstanding mechanical properties. Also, the tantalum was suggested to influence the interfacial energies of the system, yielding a stronger hard phase skeleton.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"128 ","pages":"Article 107094"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000599","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A mechanically induced self-sustaining reaction was carried out to synthesize a Ti0.9Ta0.1C0.5N0.5/Co powdered cermets, and then they were sintered by spark plasma sintering. Microstructural parameters effects studied by image analysis, and chemical composition (studied by Rietveld analysis) on the microhardness, hardening rate, fracture toughness, transverse rupture strength, and Young's modulus were related to the sintering conditions. The optimization of the sintering conditions (1150 °C, 30 MPa, and 8 min' dwell time) drove to a homogeneous microstructure and outstanding mechanical properties. Also, the tantalum was suggested to influence the interfacial energies of the system, yielding a stronger hard phase skeleton.
期刊介绍:
The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.