The current research status of immobilized lipase performance and its potential for application in food are developing toward green and healthy direction: A review

IF 3.2 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Journal of Food Science Pub Date : 2025-02-17 DOI:10.1111/1750-3841.70038
Ning Wang, Weizhe Wang, Yufeng Su, Jinglin Zhang, Baoguo Sun, Nasi Ai
{"title":"The current research status of immobilized lipase performance and its potential for application in food are developing toward green and healthy direction: A review","authors":"Ning Wang,&nbsp;Weizhe Wang,&nbsp;Yufeng Su,&nbsp;Jinglin Zhang,&nbsp;Baoguo Sun,&nbsp;Nasi Ai","doi":"10.1111/1750-3841.70038","DOIUrl":null,"url":null,"abstract":"<p>Immobilized lipases have received great attention in food, environment, medicine, and other fields due to their easy separation, high stability (temperature, pH), and high storage properties. After immobilization, lipase transforms from a homogeneous to a heterogeneous state, making it easier to recover from the reaction substrate and achieve recycling, which is in line with the concept of green chemistry and reduces protein contamination in the product. There are various materials for enzyme immobilization, including polysaccharides from natural sources, inorganic compounds, carbon nanotubes, metal–organic framework materials, and so forth. Magnetic immobilization carriers have been widely studied due to their ability to achieve separation by adding a magnetic field. Its immobilization method can be simply divided into two categories: physical action (adsorption, embedding) and chemical binding (covalent, cross-linking). Some studies mainly discuss the immobilization support materials, immobilization methods, and applications of immobilized lipases in food. On this basis, our review also focuses on the changes in crosslinking agents for immobilized lipases, different methods to promote immobilization, new trends in the study of immobilized lipases, and proposes prospects for immobilized lipase research in the food industry.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":"90 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1750-3841.70038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.70038","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immobilized lipases have received great attention in food, environment, medicine, and other fields due to their easy separation, high stability (temperature, pH), and high storage properties. After immobilization, lipase transforms from a homogeneous to a heterogeneous state, making it easier to recover from the reaction substrate and achieve recycling, which is in line with the concept of green chemistry and reduces protein contamination in the product. There are various materials for enzyme immobilization, including polysaccharides from natural sources, inorganic compounds, carbon nanotubes, metal–organic framework materials, and so forth. Magnetic immobilization carriers have been widely studied due to their ability to achieve separation by adding a magnetic field. Its immobilization method can be simply divided into two categories: physical action (adsorption, embedding) and chemical binding (covalent, cross-linking). Some studies mainly discuss the immobilization support materials, immobilization methods, and applications of immobilized lipases in food. On this basis, our review also focuses on the changes in crosslinking agents for immobilized lipases, different methods to promote immobilization, new trends in the study of immobilized lipases, and proposes prospects for immobilized lipase research in the food industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Science
Journal of Food Science 工程技术-食品科技
CiteScore
7.10
自引率
2.60%
发文量
412
审稿时长
3.1 months
期刊介绍: The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science. The range of topics covered in the journal include: -Concise Reviews and Hypotheses in Food Science -New Horizons in Food Research -Integrated Food Science -Food Chemistry -Food Engineering, Materials Science, and Nanotechnology -Food Microbiology and Safety -Sensory and Consumer Sciences -Health, Nutrition, and Food -Toxicology and Chemical Food Safety The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.
期刊最新文献
Antioxidative effects of haloarchaeal bacterioruberin in pangasius emulsion sausage during refrigerated storage Rhamnogalacturonan-I domains from red dragon fruit pectin promote the proliferation of Bifidobacterium animalis Microstructure of mixed κ- and ι-carrageenan gels viewed by rheology and solid-state NMR The current research status of immobilized lipase performance and its potential for application in food are developing toward green and healthy direction: A review Preventive efficacy of sprouting black soybean peptides on high-salt diet-induced hypertension in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1