Striatal dopamine D2, adenosine A2A and cannabinoid CB1 receptors balance as a target against non-cognitive symptoms in a mouse model of Alzheimer's disease

IF 3.3 3区 心理学 Q1 BEHAVIORAL SCIENCES Pharmacology Biochemistry and Behavior Pub Date : 2025-02-14 DOI:10.1016/j.pbb.2025.173970
Laura Gómez-Acero , Nuria Sánchez-Fernández , Paula Subirana , Francisco Ciruela , Ester Aso
{"title":"Striatal dopamine D2, adenosine A2A and cannabinoid CB1 receptors balance as a target against non-cognitive symptoms in a mouse model of Alzheimer's disease","authors":"Laura Gómez-Acero ,&nbsp;Nuria Sánchez-Fernández ,&nbsp;Paula Subirana ,&nbsp;Francisco Ciruela ,&nbsp;Ester Aso","doi":"10.1016/j.pbb.2025.173970","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral and psychological symptoms of dementia are almost ubiquitous in Alzheimer's disease (AD) but current therapies are not fully effective and safe. In this study, we aim to evaluate the role played by the interplay among striatal D<sub>2</sub>, adenosine A<sub>2A</sub> (A<sub>2A</sub>R) and cannabinoid CB<sub>1</sub> (CB<sub>1</sub>R) receptors in some of these non-cognitive impairments in a well-established animal model of AD, the double transgenic APP/PS1 mice. Our results reveal that the alterations existing in the ratios between these three receptors significantly correlate with the sensorimotor gating and the social interaction impairments occurring in APP/PS1 mice at 12 months of age. Moreover, the pharmacological stimulation of A<sub>2A</sub>R and CB<sub>1</sub>R blunted the sensorimotor gating deficiencies in APP/PS1 mice. To note, we observed some age-dependent differences among male and female mice. In conclusion, the present study provides evidence for the contribution of an altered interplay between dopaminergic, adenosinergic and endocannabinoid systems in the sensorimotor gating deficits and social withdrawal occurring in AD and points to A<sub>2A</sub>R and CB<sub>1</sub>R as a potential target to reverse these non-cognitive symptoms in AD patients.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"249 ","pages":"Article 173970"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305725000176","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Behavioral and psychological symptoms of dementia are almost ubiquitous in Alzheimer's disease (AD) but current therapies are not fully effective and safe. In this study, we aim to evaluate the role played by the interplay among striatal D2, adenosine A2A (A2AR) and cannabinoid CB1 (CB1R) receptors in some of these non-cognitive impairments in a well-established animal model of AD, the double transgenic APP/PS1 mice. Our results reveal that the alterations existing in the ratios between these three receptors significantly correlate with the sensorimotor gating and the social interaction impairments occurring in APP/PS1 mice at 12 months of age. Moreover, the pharmacological stimulation of A2AR and CB1R blunted the sensorimotor gating deficiencies in APP/PS1 mice. To note, we observed some age-dependent differences among male and female mice. In conclusion, the present study provides evidence for the contribution of an altered interplay between dopaminergic, adenosinergic and endocannabinoid systems in the sensorimotor gating deficits and social withdrawal occurring in AD and points to A2AR and CB1R as a potential target to reverse these non-cognitive symptoms in AD patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
2.80%
发文量
122
审稿时长
38 days
期刊介绍: Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.
期刊最新文献
Purified cannabidiol leads to improvement of severe treatment-resistant behavioral symptoms in children with autism spectrum disorder Striatal dopamine D2, adenosine A2A and cannabinoid CB1 receptors balance as a target against non-cognitive symptoms in a mouse model of Alzheimer's disease Age- and sex-dependent participation of the endocannabinoid system in locomotion and risk assessment of an ADHD rat model Cannabidiol interactions with oxycodone analgesia in an operant orofacial cutaneous thermal pain assay following oral administration in rats. Combination treatment with rapamycin and glucocorticoid protects the death of mesostriatal dopaminergic neurons in animal model of Parkinson's disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1