Striatal dopamine D2, adenosine A2A and cannabinoid CB1 receptors balance as a target against non-cognitive symptoms in a mouse model of Alzheimer's disease
Laura Gómez-Acero , Nuria Sánchez-Fernández , Paula Subirana , Francisco Ciruela , Ester Aso
{"title":"Striatal dopamine D2, adenosine A2A and cannabinoid CB1 receptors balance as a target against non-cognitive symptoms in a mouse model of Alzheimer's disease","authors":"Laura Gómez-Acero , Nuria Sánchez-Fernández , Paula Subirana , Francisco Ciruela , Ester Aso","doi":"10.1016/j.pbb.2025.173970","DOIUrl":null,"url":null,"abstract":"<div><div>Behavioral and psychological symptoms of dementia are almost ubiquitous in Alzheimer's disease (AD) but current therapies are not fully effective and safe. In this study, we aim to evaluate the role played by the interplay among striatal D<sub>2</sub>, adenosine A<sub>2A</sub> (A<sub>2A</sub>R) and cannabinoid CB<sub>1</sub> (CB<sub>1</sub>R) receptors in some of these non-cognitive impairments in a well-established animal model of AD, the double transgenic APP/PS1 mice. Our results reveal that the alterations existing in the ratios between these three receptors significantly correlate with the sensorimotor gating and the social interaction impairments occurring in APP/PS1 mice at 12 months of age. Moreover, the pharmacological stimulation of A<sub>2A</sub>R and CB<sub>1</sub>R blunted the sensorimotor gating deficiencies in APP/PS1 mice. To note, we observed some age-dependent differences among male and female mice. In conclusion, the present study provides evidence for the contribution of an altered interplay between dopaminergic, adenosinergic and endocannabinoid systems in the sensorimotor gating deficits and social withdrawal occurring in AD and points to A<sub>2A</sub>R and CB<sub>1</sub>R as a potential target to reverse these non-cognitive symptoms in AD patients.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"249 ","pages":"Article 173970"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305725000176","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Behavioral and psychological symptoms of dementia are almost ubiquitous in Alzheimer's disease (AD) but current therapies are not fully effective and safe. In this study, we aim to evaluate the role played by the interplay among striatal D2, adenosine A2A (A2AR) and cannabinoid CB1 (CB1R) receptors in some of these non-cognitive impairments in a well-established animal model of AD, the double transgenic APP/PS1 mice. Our results reveal that the alterations existing in the ratios between these three receptors significantly correlate with the sensorimotor gating and the social interaction impairments occurring in APP/PS1 mice at 12 months of age. Moreover, the pharmacological stimulation of A2AR and CB1R blunted the sensorimotor gating deficiencies in APP/PS1 mice. To note, we observed some age-dependent differences among male and female mice. In conclusion, the present study provides evidence for the contribution of an altered interplay between dopaminergic, adenosinergic and endocannabinoid systems in the sensorimotor gating deficits and social withdrawal occurring in AD and points to A2AR and CB1R as a potential target to reverse these non-cognitive symptoms in AD patients.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.