Biocatalytic kinetics of the reaction between CO2 and tertiary amine using carbonic anhydrase

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2025-02-10 DOI:10.1016/j.cep.2025.110218
Meng-Meng Du , Yuan-Cheng Wang , Bao-Chang Sun , Yong Luo , Liang-Liang Zhang , Guang-Wen Chu , Hai-Kui Zou
{"title":"Biocatalytic kinetics of the reaction between CO2 and tertiary amine using carbonic anhydrase","authors":"Meng-Meng Du ,&nbsp;Yuan-Cheng Wang ,&nbsp;Bao-Chang Sun ,&nbsp;Yong Luo ,&nbsp;Liang-Liang Zhang ,&nbsp;Guang-Wen Chu ,&nbsp;Hai-Kui Zou","doi":"10.1016/j.cep.2025.110218","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonic anhydrase (CA) is a high-efficiency biocatalyst that significantly improves the absorption of CO<sub>2</sub> by tertiary amine. This work aims to investigate kinetics behaviors from the perspective of enzymatic reaction mechanism. The influences of the CA concentration, type of tertiary amines, pH, and temperature on the reaction rate between CO<sub>2</sub> and tertiary amine (<em>ν</em>) and catalytic activity of CA (<em>φ</em>) were first investigated in a stopped-flow device. Adding 50 g∙m⁻³ CA enhanced <em>ν</em> in tertiary amine solutions by a factor ranging from 22 to 42 at 298 K and pH=9.5, demonstrating its excellent catalytic performance. The <em>ν</em> increased with increasing CA concentration, pH, temperature, and tertiary amine's <em>pK</em>a. <em>φ</em> increased with the increase of CA concentration, as well as the decrease of temperature, pH, and tertiary amine's <em>pK</em>a. Proteomics analysis further revealed that conformational changes of the CA's secondary structure induced by high pH and temperature altered the expressions of the local active-site region and deactivated CA, ultimately leading to a decrease in <em>φ</em>. Additionally, the CA-catalysis kinetics equation accorded with the Michaelis-Menten model, with catalytic second-order rate constants on the magnitude of 10<sup>7</sup>. Overall, this work provides a guideline for its industrial application in the CO<sub>2</sub> capture process.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"211 ","pages":"Article 110218"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125000674","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonic anhydrase (CA) is a high-efficiency biocatalyst that significantly improves the absorption of CO2 by tertiary amine. This work aims to investigate kinetics behaviors from the perspective of enzymatic reaction mechanism. The influences of the CA concentration, type of tertiary amines, pH, and temperature on the reaction rate between CO2 and tertiary amine (ν) and catalytic activity of CA (φ) were first investigated in a stopped-flow device. Adding 50 g∙m⁻³ CA enhanced ν in tertiary amine solutions by a factor ranging from 22 to 42 at 298 K and pH=9.5, demonstrating its excellent catalytic performance. The ν increased with increasing CA concentration, pH, temperature, and tertiary amine's pKa. φ increased with the increase of CA concentration, as well as the decrease of temperature, pH, and tertiary amine's pKa. Proteomics analysis further revealed that conformational changes of the CA's secondary structure induced by high pH and temperature altered the expressions of the local active-site region and deactivated CA, ultimately leading to a decrease in φ. Additionally, the CA-catalysis kinetics equation accorded with the Michaelis-Menten model, with catalytic second-order rate constants on the magnitude of 107. Overall, this work provides a guideline for its industrial application in the CO2 capture process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Intensification and enhancement of phenolic compounds extraction using cooperative formulation Editorial Board Enhanced chloroquine adsorption using cobalt-modified mesoporous silicas for water treatment Development of 3D-printed electrodes using polyacrylonitrile/ graphene composites for application in polysulfide bromide flow battery Process modeling, simulation and thermodynamic analysis of a novel process integrating coal gasification, smelting reduction and methanol synthesis for ironmaking and methanol co-production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1