Ertan Demirdaş, Gökhan Arslan, Hakan Kartal, Gökhan Erol, Tayfun Özdem, Başak Büyük Yavuz, Celalettin Günay, Bilgehan Savaş Öz
{"title":"Melatonin as a shield against skeletal muscle damage: A study on ischemia-reperfusion injury.","authors":"Ertan Demirdaş, Gökhan Arslan, Hakan Kartal, Gökhan Erol, Tayfun Özdem, Başak Büyük Yavuz, Celalettin Günay, Bilgehan Savaş Öz","doi":"10.14744/tjtes.2025.44890","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated the protective effects of melatonin against skeletal muscle ischemia-reperfusion injury, a significant cause of skeletal muscle damage. Ischemia-reperfusion (I/R) injury occurs due to a temporary restriction of blood flow (ischemia) followed by its restoration (reperfusion), triggering oxidative stress, inflammation, and cell death. Although current treatments are limited, melatonin's antioxidant and anti-inflammatory properties suggest potential benefits.</p><p><strong>Methods: </strong>We studied 30 male mice divided into five groups: control, melatonin control, I/R, melatonin + I/R, and dimethyl sulfoxide control. After the designated treatments, we assessed muscle tissue for antioxidant capacity (total antioxidant status [TAS]), oxidative stress markers (total oxidative status [TOS] and malondialdehyde [MDA]), inflammation (myeloperoxidase [MPO]), and cell death (terminal deoxynucleotidyl transferase dUTP nick-end labeling [TUNEL] assay and histological analysis).</p><p><strong>Results: </strong>Melatonin significantly increased antioxidant capacity (TAS) compared to all other groups. Conversely, oxidative stress (TOS) was significantly lower in the melatonin + I/R group compared to the I/R group alone. Histological analysis revealed greater necrosis, edema, inflammation, and cell death in the I/R group compared to others. Interestingly, the melatonin + I/R group exhibited significantly less damage than the I/R group, highlighting melatonin's protective effect.</p><p><strong>Conclusion: </strong>This study demonstrates that exogenous melatonin effectively reduces oxidative stress, inflammation, and cell death in skeletal muscle tissue subjected to I/R injury. These findings suggest that melatonin may be a promising therapeutic agent for mitigating I/R-induced complications in skeletal muscle injury.</p>","PeriodicalId":94263,"journal":{"name":"Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery : TJTES","volume":"31 2","pages":"103-111"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843425/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ulusal travma ve acil cerrahi dergisi = Turkish journal of trauma & emergency surgery : TJTES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/tjtes.2025.44890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We evaluated the protective effects of melatonin against skeletal muscle ischemia-reperfusion injury, a significant cause of skeletal muscle damage. Ischemia-reperfusion (I/R) injury occurs due to a temporary restriction of blood flow (ischemia) followed by its restoration (reperfusion), triggering oxidative stress, inflammation, and cell death. Although current treatments are limited, melatonin's antioxidant and anti-inflammatory properties suggest potential benefits.
Methods: We studied 30 male mice divided into five groups: control, melatonin control, I/R, melatonin + I/R, and dimethyl sulfoxide control. After the designated treatments, we assessed muscle tissue for antioxidant capacity (total antioxidant status [TAS]), oxidative stress markers (total oxidative status [TOS] and malondialdehyde [MDA]), inflammation (myeloperoxidase [MPO]), and cell death (terminal deoxynucleotidyl transferase dUTP nick-end labeling [TUNEL] assay and histological analysis).
Results: Melatonin significantly increased antioxidant capacity (TAS) compared to all other groups. Conversely, oxidative stress (TOS) was significantly lower in the melatonin + I/R group compared to the I/R group alone. Histological analysis revealed greater necrosis, edema, inflammation, and cell death in the I/R group compared to others. Interestingly, the melatonin + I/R group exhibited significantly less damage than the I/R group, highlighting melatonin's protective effect.
Conclusion: This study demonstrates that exogenous melatonin effectively reduces oxidative stress, inflammation, and cell death in skeletal muscle tissue subjected to I/R injury. These findings suggest that melatonin may be a promising therapeutic agent for mitigating I/R-induced complications in skeletal muscle injury.