Protein language models for predicting drug–target interactions: Novel approaches, emerging methods, and future directions

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2025-02-21 DOI:10.1016/j.sbi.2025.103017
Atabey Ünlü , Erva Ulusoy , Melih Gökay Yiğit , Melih Darcan , Tunca Doğan
{"title":"Protein language models for predicting drug–target interactions: Novel approaches, emerging methods, and future directions","authors":"Atabey Ünlü ,&nbsp;Erva Ulusoy ,&nbsp;Melih Gökay Yiğit ,&nbsp;Melih Darcan ,&nbsp;Tunca Doğan","doi":"10.1016/j.sbi.2025.103017","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying new drug candidates remains a critical and complex challenge in drug development. Recent advances in deep learning have demonstrated significant potential to accelerate this process, particularly through the use of protein language models (pLMs). These models aim to effectively capture the structural and functional properties of proteins by embedding them in high-dimensional spaces, thereby providing powerful tools for predictive tasks. This review examines the application of pLMs in drug-target interaction (DTI) prediction, addressing both small-molecule and protein-based therapeutics. We explore diverse methodologies, including end-to-end learning models and those that leverage pre-trained foundational pLMs. Furthermore, we highlight the role of heterogeneous data integration—ranging from protein structures to knowledge graphs—to improve the accuracy of DTI predictions. Despite notable progress, challenges persist in accurately identifying DTIs, mainly due to data-related limitations and algorithmic constraints. Future research directions include utilising multimodal learning approaches, incorporating temporal/dynamic interaction data into training, and employing novel deep learning architectures to refine protein representations, gain a deeper understanding of biological context regarding molecular interactions, and, thus, advance the DTI prediction field.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"91 ","pages":"Article 103017"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000351","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying new drug candidates remains a critical and complex challenge in drug development. Recent advances in deep learning have demonstrated significant potential to accelerate this process, particularly through the use of protein language models (pLMs). These models aim to effectively capture the structural and functional properties of proteins by embedding them in high-dimensional spaces, thereby providing powerful tools for predictive tasks. This review examines the application of pLMs in drug-target interaction (DTI) prediction, addressing both small-molecule and protein-based therapeutics. We explore diverse methodologies, including end-to-end learning models and those that leverage pre-trained foundational pLMs. Furthermore, we highlight the role of heterogeneous data integration—ranging from protein structures to knowledge graphs—to improve the accuracy of DTI predictions. Despite notable progress, challenges persist in accurately identifying DTIs, mainly due to data-related limitations and algorithmic constraints. Future research directions include utilising multimodal learning approaches, incorporating temporal/dynamic interaction data into training, and employing novel deep learning architectures to refine protein representations, gain a deeper understanding of biological context regarding molecular interactions, and, thus, advance the DTI prediction field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Protein language models for predicting drug–target interactions: Novel approaches, emerging methods, and future directions Dynamics-based drug discovery by time-resolved cryo-EM Teaching AI to speak protein Foundation models of protein sequences: A brief overview Chromatin domains in the cell: Phase separation and condensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1