Atabey Ünlü , Erva Ulusoy , Melih Gökay Yiğit , Melih Darcan , Tunca Doğan
{"title":"Protein language models for predicting drug–target interactions: Novel approaches, emerging methods, and future directions","authors":"Atabey Ünlü , Erva Ulusoy , Melih Gökay Yiğit , Melih Darcan , Tunca Doğan","doi":"10.1016/j.sbi.2025.103017","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying new drug candidates remains a critical and complex challenge in drug development. Recent advances in deep learning have demonstrated significant potential to accelerate this process, particularly through the use of protein language models (pLMs). These models aim to effectively capture the structural and functional properties of proteins by embedding them in high-dimensional spaces, thereby providing powerful tools for predictive tasks. This review examines the application of pLMs in drug-target interaction (DTI) prediction, addressing both small-molecule and protein-based therapeutics. We explore diverse methodologies, including end-to-end learning models and those that leverage pre-trained foundational pLMs. Furthermore, we highlight the role of heterogeneous data integration—ranging from protein structures to knowledge graphs—to improve the accuracy of DTI predictions. Despite notable progress, challenges persist in accurately identifying DTIs, mainly due to data-related limitations and algorithmic constraints. Future research directions include utilising multimodal learning approaches, incorporating temporal/dynamic interaction data into training, and employing novel deep learning architectures to refine protein representations, gain a deeper understanding of biological context regarding molecular interactions, and, thus, advance the DTI prediction field.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"91 ","pages":"Article 103017"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000351","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying new drug candidates remains a critical and complex challenge in drug development. Recent advances in deep learning have demonstrated significant potential to accelerate this process, particularly through the use of protein language models (pLMs). These models aim to effectively capture the structural and functional properties of proteins by embedding them in high-dimensional spaces, thereby providing powerful tools for predictive tasks. This review examines the application of pLMs in drug-target interaction (DTI) prediction, addressing both small-molecule and protein-based therapeutics. We explore diverse methodologies, including end-to-end learning models and those that leverage pre-trained foundational pLMs. Furthermore, we highlight the role of heterogeneous data integration—ranging from protein structures to knowledge graphs—to improve the accuracy of DTI predictions. Despite notable progress, challenges persist in accurately identifying DTIs, mainly due to data-related limitations and algorithmic constraints. Future research directions include utilising multimodal learning approaches, incorporating temporal/dynamic interaction data into training, and employing novel deep learning architectures to refine protein representations, gain a deeper understanding of biological context regarding molecular interactions, and, thus, advance the DTI prediction field.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation