Teaching AI to speak protein

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2025-02-21 DOI:10.1016/j.sbi.2025.102986
Michael Heinzinger , Burkhard Rost
{"title":"Teaching AI to speak protein","authors":"Michael Heinzinger ,&nbsp;Burkhard Rost","doi":"10.1016/j.sbi.2025.102986","DOIUrl":null,"url":null,"abstract":"<div><div>Large Language Models for proteins, namely protein Language Models (<u>pLMs</u>), have begun to provide an important alternative to capturing the information encoded in a protein sequence in computers. Arguably, pLMs have advanced importantly to understanding aspects of the <em>language of life</em> as written in proteins, and through this understanding, they are becoming an increasingly powerful means of advancing protein prediction, e.g., in the prediction of molecular function as expressed by identifying binding residues or variant effects. While benefitting from the same technology, protein structure prediction remains one of the few applications for which only using pLM embeddings from single sequences appears not to improve over or match the state-of-the-art. Fine-tuning foundation pLMs enhances efficiency and accuracy of solutions, in particular in cases with few experimental annotations. pLMs facilitate the integration of computational and experimental biology, of AI and wet-lab, in particular toward a new era of protein design.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"91 ","pages":"Article 102986"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models for proteins, namely protein Language Models (pLMs), have begun to provide an important alternative to capturing the information encoded in a protein sequence in computers. Arguably, pLMs have advanced importantly to understanding aspects of the language of life as written in proteins, and through this understanding, they are becoming an increasingly powerful means of advancing protein prediction, e.g., in the prediction of molecular function as expressed by identifying binding residues or variant effects. While benefitting from the same technology, protein structure prediction remains one of the few applications for which only using pLM embeddings from single sequences appears not to improve over or match the state-of-the-art. Fine-tuning foundation pLMs enhances efficiency and accuracy of solutions, in particular in cases with few experimental annotations. pLMs facilitate the integration of computational and experimental biology, of AI and wet-lab, in particular toward a new era of protein design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Protein language models for predicting drug–target interactions: Novel approaches, emerging methods, and future directions Dynamics-based drug discovery by time-resolved cryo-EM Teaching AI to speak protein Foundation models of protein sequences: A brief overview Chromatin domains in the cell: Phase separation and condensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1