{"title":"Microextraction-Driven Optical Fiber Sensor Coupled with Signal Enhancement by Gold Nanostars for Detection of Antibiotics in Food and Water","authors":"Chang Liu, Jialin Huang, Jisen Chen, Qiong Xue, Hui Yan, Dezhao Kong, Ziyu Ma, Wei Shen, Hian Kee Lee, Sheng Tang","doi":"10.1021/acssensors.4c03301","DOIUrl":null,"url":null,"abstract":"In this work, a portable optical fiber-based “microextraction sensing” platform coupled with gold nanostars (Au NSRs) was designed for the detection of kanamycin (Kana). Replaceable optical fibers were used as solid-phase microextraction (SPME) devices and sensing probes. Au NSRs and Kana aptamers were sequentially modified onto a fiber core as sensing elements. The evanescent wave generated from the fiber interacted with the surface of the Au NSR, and the localized surface plasmon resonance (LSPR) effect was triggered. In the presence of Kana, the refractive index of the Au NSR surface changed, causing the LSPR characteristic peak to shift, thereby enabling the quantitative detection of Kana. Benefiting from the strong “hot spot” effect produced by the sharp branches of the Au NSR, the intensity of the signals was greatly increased. Under optimal conditions, the sensing platform exhibited high selectivity toward Kana. The calibration linear range was 0.5–500 nM (<i>r</i><sup>2</sup> = 0.997), and a limit of detection of 0.138 nM was achieved. The optical fiber could be easily disassembled and reused. Signal stability remained intact even after a replaceable optical fiber probe was cleaned and used 10 times. The sensor was successfully applied to the analysis of Kana residues in genuine cow’s milk samples. The procedure was also applied to river water samples. This assay has unique advantages of low cost, simplicity, and recyclability, making it a promising approach for food analysis and environmental monitoring.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"66 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03301","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a portable optical fiber-based “microextraction sensing” platform coupled with gold nanostars (Au NSRs) was designed for the detection of kanamycin (Kana). Replaceable optical fibers were used as solid-phase microextraction (SPME) devices and sensing probes. Au NSRs and Kana aptamers were sequentially modified onto a fiber core as sensing elements. The evanescent wave generated from the fiber interacted with the surface of the Au NSR, and the localized surface plasmon resonance (LSPR) effect was triggered. In the presence of Kana, the refractive index of the Au NSR surface changed, causing the LSPR characteristic peak to shift, thereby enabling the quantitative detection of Kana. Benefiting from the strong “hot spot” effect produced by the sharp branches of the Au NSR, the intensity of the signals was greatly increased. Under optimal conditions, the sensing platform exhibited high selectivity toward Kana. The calibration linear range was 0.5–500 nM (r2 = 0.997), and a limit of detection of 0.138 nM was achieved. The optical fiber could be easily disassembled and reused. Signal stability remained intact even after a replaceable optical fiber probe was cleaned and used 10 times. The sensor was successfully applied to the analysis of Kana residues in genuine cow’s milk samples. The procedure was also applied to river water samples. This assay has unique advantages of low cost, simplicity, and recyclability, making it a promising approach for food analysis and environmental monitoring.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.