Shijuan Song, Wenhao Zhou, Xinyue Wei, Huijun Zhao, Dan Hu, Jiaqing Liu, Xin Zhang, Sha Yu, Fengchun Yang
{"title":"A Janus Fabric with Hexagonal Microcavity Channels for Efficient Urine Transport and Accurate Physiological Monitoring","authors":"Shijuan Song, Wenhao Zhou, Xinyue Wei, Huijun Zhao, Dan Hu, Jiaqing Liu, Xin Zhang, Sha Yu, Fengchun Yang","doi":"10.1021/acssensors.4c03362","DOIUrl":null,"url":null,"abstract":"The current research on wearable electrochemical sensors for urine monitoring is relatively rare, which is primarily limited by the lack of an active management mechanism to effectively manipulate the transportation of excessive liquids. In this work, a Janus fabric with hexagonal microcavity channels (HMJ-FT) was assembled based on a disposable facial towel, which was further introduced to develop the wearable electrochemical sensor (HMJ-Sensor) for the directional manipulation of urine transportation and simultaneous detection of dopamine (DA) and uric acid (UA). The designed hexagonal microcavity structure can synergistically promote horizontal migration and vertical transport of liquid, thus ensuring efficient and rapid manipulation of urine transportation and preventing its accumulation and reflux, which are essential for accurate, real-time monitoring. Therefore, the constructed HMJ-Sensor demonstrated a lower limit of detection (LOD) compared to most reported wearable sensors, which is 10.0770 nM for DA and 1.4100 nM for UA, respectively. Additionally, it also has the widest detection range known to date (DA: 0.0360–4000 μM; UA: 0.0050–6000 μM), which can better adapt to the large volume of urine transport and significant fluctuations on urine concentration in practical applications. After being subjected to a 120-day storage period along with multiple bending, rubbing, and washing treatments, the HMJ-Sensor maintained its excellent detection performance, indicating its high stability and reliability. This work not only provided a novel strategy for the manipulation of urine transport but also enhanced the detection capabilities of urine monitoring, which holds significant potential for boosting wearable applications and medical monitoring in physiological and clinical settings.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"37 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03362","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current research on wearable electrochemical sensors for urine monitoring is relatively rare, which is primarily limited by the lack of an active management mechanism to effectively manipulate the transportation of excessive liquids. In this work, a Janus fabric with hexagonal microcavity channels (HMJ-FT) was assembled based on a disposable facial towel, which was further introduced to develop the wearable electrochemical sensor (HMJ-Sensor) for the directional manipulation of urine transportation and simultaneous detection of dopamine (DA) and uric acid (UA). The designed hexagonal microcavity structure can synergistically promote horizontal migration and vertical transport of liquid, thus ensuring efficient and rapid manipulation of urine transportation and preventing its accumulation and reflux, which are essential for accurate, real-time monitoring. Therefore, the constructed HMJ-Sensor demonstrated a lower limit of detection (LOD) compared to most reported wearable sensors, which is 10.0770 nM for DA and 1.4100 nM for UA, respectively. Additionally, it also has the widest detection range known to date (DA: 0.0360–4000 μM; UA: 0.0050–6000 μM), which can better adapt to the large volume of urine transport and significant fluctuations on urine concentration in practical applications. After being subjected to a 120-day storage period along with multiple bending, rubbing, and washing treatments, the HMJ-Sensor maintained its excellent detection performance, indicating its high stability and reliability. This work not only provided a novel strategy for the manipulation of urine transport but also enhanced the detection capabilities of urine monitoring, which holds significant potential for boosting wearable applications and medical monitoring in physiological and clinical settings.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.