{"title":"Semi-asynchronous federated learning-based privacy-preserving intrusion detection for advanced metering infrastructure","authors":"Zhuoqun Xia , Hongmei Zhou , Zhenzhen Hu , Qisheng Jiang , Kaixin Zhou","doi":"10.1016/j.ijcip.2025.100742","DOIUrl":null,"url":null,"abstract":"<div><div>The emergence of smart grid brings great convenience to users and power companies, but also brings many new problems, among which the most prominent one is network attack security. Although federated learning works well in dealing with smart grid network attacks, it suffers from gradient leakage, client node failure and a single type of training model. Therefore, this paper proposes a semi-asynchronous federated learning-based privacy-preserving intrusion detection for advanced metering infrastructure (AMI). First, we design a hierarchical federated learning framework based on chained secure multiparty computing, which allows concentrators to collaboratively train models to protect local gradients. Second, we adapt the framework to the AMI network structure characteristics, and design a semi-asynchronous model distribution protocol. Finally, we build an ensemble model based on temporal convolutional network and gated recurrent unit (TCN-GRU) to detect AMI network attacks. The experimental results show that the proposed method can achieve 99.23% accuracy than existing methods.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"49 ","pages":"Article 100742"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548225000046","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of smart grid brings great convenience to users and power companies, but also brings many new problems, among which the most prominent one is network attack security. Although federated learning works well in dealing with smart grid network attacks, it suffers from gradient leakage, client node failure and a single type of training model. Therefore, this paper proposes a semi-asynchronous federated learning-based privacy-preserving intrusion detection for advanced metering infrastructure (AMI). First, we design a hierarchical federated learning framework based on chained secure multiparty computing, which allows concentrators to collaboratively train models to protect local gradients. Second, we adapt the framework to the AMI network structure characteristics, and design a semi-asynchronous model distribution protocol. Finally, we build an ensemble model based on temporal convolutional network and gated recurrent unit (TCN-GRU) to detect AMI network attacks. The experimental results show that the proposed method can achieve 99.23% accuracy than existing methods.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.