Investigating T-Cell Receptor Dynamics Under In Vitro Antibody-Based Stimulation Using Imaging Flow Cytometry.

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Cytometry Part A Pub Date : 2025-02-21 DOI:10.1002/cyto.a.24916
Akihiro Isozaki, Kazuma Kita, Natsumi Tiffany Ishii, Yuma Oka, Maik Herbig, Mai Yamagishi, Tsubasa Wakamiya, Taketo Araki, Hiroki Matsumura, Jeffrey Harmon, Yoshitaka Shirasaki, Kangrui Huang, Yaqi Zhao, Dan Yuan, Mika Hayashi, Tianben Ding, Yuji Okamoto, Ayuko Kishimoto, Masaru Ishii, Masatoshi Yanagida, Keisuke Goda
{"title":"Investigating T-Cell Receptor Dynamics Under In Vitro Antibody-Based Stimulation Using Imaging Flow Cytometry.","authors":"Akihiro Isozaki, Kazuma Kita, Natsumi Tiffany Ishii, Yuma Oka, Maik Herbig, Mai Yamagishi, Tsubasa Wakamiya, Taketo Araki, Hiroki Matsumura, Jeffrey Harmon, Yoshitaka Shirasaki, Kangrui Huang, Yaqi Zhao, Dan Yuan, Mika Hayashi, Tianben Ding, Yuji Okamoto, Ayuko Kishimoto, Masaru Ishii, Masatoshi Yanagida, Keisuke Goda","doi":"10.1002/cyto.a.24916","DOIUrl":null,"url":null,"abstract":"<p><p>T cells play a pivotal role in the immune system's response to various conditions. They are activated by antigen-presenting cells (APCs) via T-cell surface receptors, resulting in cytokine production and T-cell proliferation. These interactions occur through the formation of immunological synapses. The advent of imaging flow cytometry has enabled detailed statistical analyses of these cellular interactions. However, the dynamics of T-cell receptors in response to in vitro stimulation are yet to receive attention, despite it being a crucial aspect of understanding T-cell behavior. In this article, we explore the responses of T cells to in vitro antibody-based stimulation without APCs. Specifically, we established a Th1 cell clone, subjected it to a combination of centrifugation-induced mechanical stress and anti-human CD3 and anti-human CD28 antibody stimulation as the in vitro antibody-based stimulation, and captured and analyzed bright-field and fluorescence images of single cells various hours after stimulation using an imaging flow cytometer. Our results indicate distinct temporal dynamics of CD3 and CD28. Notably, CD3 and CD28 relocated on the T-cell surface immediately after stimulation, with CD3 receptors dispersing after 3.5 h, whereas CD28 remained clustered for 7.5 h. These receptor morphological changes precede cytokine production, suggesting their potential as early indicators of T-cell activation.</p>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cyto.a.24916","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

T cells play a pivotal role in the immune system's response to various conditions. They are activated by antigen-presenting cells (APCs) via T-cell surface receptors, resulting in cytokine production and T-cell proliferation. These interactions occur through the formation of immunological synapses. The advent of imaging flow cytometry has enabled detailed statistical analyses of these cellular interactions. However, the dynamics of T-cell receptors in response to in vitro stimulation are yet to receive attention, despite it being a crucial aspect of understanding T-cell behavior. In this article, we explore the responses of T cells to in vitro antibody-based stimulation without APCs. Specifically, we established a Th1 cell clone, subjected it to a combination of centrifugation-induced mechanical stress and anti-human CD3 and anti-human CD28 antibody stimulation as the in vitro antibody-based stimulation, and captured and analyzed bright-field and fluorescence images of single cells various hours after stimulation using an imaging flow cytometer. Our results indicate distinct temporal dynamics of CD3 and CD28. Notably, CD3 and CD28 relocated on the T-cell surface immediately after stimulation, with CD3 receptors dispersing after 3.5 h, whereas CD28 remained clustered for 7.5 h. These receptor morphological changes precede cytokine production, suggesting their potential as early indicators of T-cell activation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
期刊最新文献
A User-Centric Approach to Reliable Automated Flow Cytometry Data Analysis for Biomedical Applications. Investigating T-Cell Receptor Dynamics Under In Vitro Antibody-Based Stimulation Using Imaging Flow Cytometry. Quantifying Nuclear Structures of Digital Pathology Images Across Cancers Using Transport-Based Morphometry. CytoNorm 2.0: A flexible normalization framework for cytometry data without requiring dedicated controls. A 37-Color Spectral Flow Cytometric Panel to Assess Transcription Factors and Chemokine Receptors in Human Intestinal Lymphoid Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1