Direct solid-phase nitrogenous fertilizer recovery from wastewater: The hybrid system of membrane contactor and solvent-driven fractional crystallization
Jaebeom Park , Changmin Lee , Younghun Kim , Dongwhan Lee , Jong Kwon Choe , Yongju Choi
{"title":"Direct solid-phase nitrogenous fertilizer recovery from wastewater: The hybrid system of membrane contactor and solvent-driven fractional crystallization","authors":"Jaebeom Park , Changmin Lee , Younghun Kim , Dongwhan Lee , Jong Kwon Choe , Yongju Choi","doi":"10.1016/j.watres.2025.123372","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel configuration that integrates a membrane contactor with solvent-driven fractional crystallization (SDFC) to recover ammonia from wastewater and produce it as solid-phase nitrogenous fertilizers. A liquid-gas membrane contactor strips ammonia from wastewater in a gaseous form, which enters a strip tank containing a binary mixture of an aqueous anion solution and an organic solvent. There, the ammonia reacts with anions, instantly protonating and forming solid-phase fertilizers. Batch SDFC experiments identified phosphate and sulfate as viable options for producing solid-phase fertilizers from the ammonia gas entering the strip tank. The hybrid system utilizing these acids produced high-grade fertilizers free from soil acidification concerns: a mixture of monoammonium phosphate and diammonium phosphate, and pure ammonium sulfate. Ammonium sulfate crystals in the strip tank grew epitaxially, representing a unique ammonium sulfate crystallization pattern when ammonium concentration gradually increased to supersaturation. A single system run produced solid fertilizers that amounted to 81.54 and 83.84% of the initially added phosphoric and sulfuric acid, respectively. Organic solvents in the strip tank could be recycled for at least five cycles while maintaining crystallization efficiencies of <span><math><mo>≥</mo></math></span>82.63%. These results highlight the potential for semi-permanent operation of the system without the need for solvent replenishment.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"278 ","pages":"Article 123372"},"PeriodicalIF":11.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425002854","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a novel configuration that integrates a membrane contactor with solvent-driven fractional crystallization (SDFC) to recover ammonia from wastewater and produce it as solid-phase nitrogenous fertilizers. A liquid-gas membrane contactor strips ammonia from wastewater in a gaseous form, which enters a strip tank containing a binary mixture of an aqueous anion solution and an organic solvent. There, the ammonia reacts with anions, instantly protonating and forming solid-phase fertilizers. Batch SDFC experiments identified phosphate and sulfate as viable options for producing solid-phase fertilizers from the ammonia gas entering the strip tank. The hybrid system utilizing these acids produced high-grade fertilizers free from soil acidification concerns: a mixture of monoammonium phosphate and diammonium phosphate, and pure ammonium sulfate. Ammonium sulfate crystals in the strip tank grew epitaxially, representing a unique ammonium sulfate crystallization pattern when ammonium concentration gradually increased to supersaturation. A single system run produced solid fertilizers that amounted to 81.54 and 83.84% of the initially added phosphoric and sulfuric acid, respectively. Organic solvents in the strip tank could be recycled for at least five cycles while maintaining crystallization efficiencies of 82.63%. These results highlight the potential for semi-permanent operation of the system without the need for solvent replenishment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.