Multiphysics simulation of frost heave in unsaturated road systems under covering effect

IF 4.9 2区 工程技术 Q1 ENGINEERING, CIVIL Transportation Geotechnics Pub Date : 2025-02-19 DOI:10.1016/j.trgeo.2025.101526
Lin Li , Zepeng Zhang , Weiling Zu , Panpan Li , Weibing Gong
{"title":"Multiphysics simulation of frost heave in unsaturated road systems under covering effect","authors":"Lin Li ,&nbsp;Zepeng Zhang ,&nbsp;Weiling Zu ,&nbsp;Panpan Li ,&nbsp;Weibing Gong","doi":"10.1016/j.trgeo.2025.101526","DOIUrl":null,"url":null,"abstract":"<div><div>The frost heave of road systems under the covering effect involves the coupled transport of water, heat, and gas, along with the dynamic phase transition of water, vapor, and ice, resulting in a complex multi-physical field coupling process. This study presents a multi-physics numerical model to investigate the frost heave process of road systems in cold regions. The model not only considers the pavement covering effect and the multi-layered structure of the road, but also represents the multi-field coupling and multiphase transitions involved in the system. The model validation is conducted by comparing it with experimental results from a well-documented sample experiment, which simplifies the initial and boundary conditions of the road system calculation profile model. Following the multi-field coupling analysis, a parametric analysis is conducted to explore the impact of different roadbed parameters on the covering effect. Special attention is given to the effects of initial moisture content, temperature gradient, cooling rate, and compactness of fillers on the frost heave process. The results show that the migration and phase transition of vapor impact the freezing process of road systems. In the stable phase of the freeze process, the moisture content at the top of the road substantially exceeds the initial level, a phenomenon driven by vapor migration. This multi-physics simulation can potentially serve as a guidance for studying the frost heave mechanism of road systems in cold regions.</div></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":"51 ","pages":"Article 101526"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391225000455","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The frost heave of road systems under the covering effect involves the coupled transport of water, heat, and gas, along with the dynamic phase transition of water, vapor, and ice, resulting in a complex multi-physical field coupling process. This study presents a multi-physics numerical model to investigate the frost heave process of road systems in cold regions. The model not only considers the pavement covering effect and the multi-layered structure of the road, but also represents the multi-field coupling and multiphase transitions involved in the system. The model validation is conducted by comparing it with experimental results from a well-documented sample experiment, which simplifies the initial and boundary conditions of the road system calculation profile model. Following the multi-field coupling analysis, a parametric analysis is conducted to explore the impact of different roadbed parameters on the covering effect. Special attention is given to the effects of initial moisture content, temperature gradient, cooling rate, and compactness of fillers on the frost heave process. The results show that the migration and phase transition of vapor impact the freezing process of road systems. In the stable phase of the freeze process, the moisture content at the top of the road substantially exceeds the initial level, a phenomenon driven by vapor migration. This multi-physics simulation can potentially serve as a guidance for studying the frost heave mechanism of road systems in cold regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Geotechnics
Transportation Geotechnics Social Sciences-Transportation
CiteScore
8.10
自引率
11.30%
发文量
194
审稿时长
51 days
期刊介绍: Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.
期刊最新文献
Spring load restriction methods: A comprehensive review Visualization of the microscopic mechanism of slurry infiltration and filter cake formation for slurry shield tunneling in saturated sand: A microfluidic chip experiment Model tests study of multi-layer geosynthetic-reinforced pile-supported embankments and evaluation of analytical design models Multiphysics simulation of frost heave in unsaturated road systems under covering effect Effect of installation damage on the behavior of a polypropylene geogrid in an aggressive environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1