Cumulative Energy Demand and Global Warming Potential of metals and minerals production: Assessment, projections and mitigation options

IF 10.2 2区 经济学 0 ENVIRONMENTAL STUDIES Resources Policy Pub Date : 2025-02-26 DOI:10.1016/j.resourpol.2025.105516
Thibaut Feix , Emmanuel Hache
{"title":"Cumulative Energy Demand and Global Warming Potential of metals and minerals production: Assessment, projections and mitigation options","authors":"Thibaut Feix ,&nbsp;Emmanuel Hache","doi":"10.1016/j.resourpol.2025.105516","DOIUrl":null,"url":null,"abstract":"<div><div>This study estimates the cumulative energy demand and global warming potential for 50 metals and 22 non-metallic commodities, incorporating uncertainties through three distinct assessments: low, high, and median, based on the Ecoinvent 3.8 database. The results show that the cumulative energy demand of these commodities represents between 11.3% and 18.2% of global primary energy consumption in 2019, with a median estimate of 13.8%. Similarly, the global warming potential accounts for 13.4%–19.1% of global greenhouse gas (GHG) emissions in the same year, with a median estimate of 17.7%. Iron and steel, aluminum, and cement production emerge as the dominant contributors, responsible for approximately 80% of cumulative energy demand and 90% of GHG emissions across all scenarios. The study also quantifies the potential environmental benefits of enhanced recycling and the accelerated adoption of electric arc furnace technology for steel production in China. These measures can potentially reduce global cumulative energy demand by up to 2.1% and 1.6% respectively and GHG emissions by up to 1.8% and 0.9%. The analysis further examines the energy and climate impacts of mining requirements for a clean energy transition, using IEA's Sustainable Development Scenario. Considering current extraction technologies, the production surplus associated with this scenario could increase global cumulative energy demand by 1.1% and global warming potential by 0.6%. However, these increases would be outweighed by the corresponding reductions in fossil fuel consumption. The paper concludes by discussing the sectors and regions most associated with the environmental burdens of metal and mineral production and highlight key strategies for mitigating these impacts.</div></div>","PeriodicalId":20970,"journal":{"name":"Resources Policy","volume":"102 ","pages":"Article 105516"},"PeriodicalIF":10.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Policy","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301420725000583","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

This study estimates the cumulative energy demand and global warming potential for 50 metals and 22 non-metallic commodities, incorporating uncertainties through three distinct assessments: low, high, and median, based on the Ecoinvent 3.8 database. The results show that the cumulative energy demand of these commodities represents between 11.3% and 18.2% of global primary energy consumption in 2019, with a median estimate of 13.8%. Similarly, the global warming potential accounts for 13.4%–19.1% of global greenhouse gas (GHG) emissions in the same year, with a median estimate of 17.7%. Iron and steel, aluminum, and cement production emerge as the dominant contributors, responsible for approximately 80% of cumulative energy demand and 90% of GHG emissions across all scenarios. The study also quantifies the potential environmental benefits of enhanced recycling and the accelerated adoption of electric arc furnace technology for steel production in China. These measures can potentially reduce global cumulative energy demand by up to 2.1% and 1.6% respectively and GHG emissions by up to 1.8% and 0.9%. The analysis further examines the energy and climate impacts of mining requirements for a clean energy transition, using IEA's Sustainable Development Scenario. Considering current extraction technologies, the production surplus associated with this scenario could increase global cumulative energy demand by 1.1% and global warming potential by 0.6%. However, these increases would be outweighed by the corresponding reductions in fossil fuel consumption. The paper concludes by discussing the sectors and regions most associated with the environmental burdens of metal and mineral production and highlight key strategies for mitigating these impacts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Melt-Extruded Sensory Fibers for Electronic Textiles
IF 3.9 3区 材料科学Macromolecular Materials and EngineeringPub Date : 2021-12-15 DOI: 10.1002/mame.202100737
Jordan Tabor, Brendan Thompson, Talha Agcayazi, Alper Bozkurt, Tushar K. Ghosh
Melt-Extruded Sensory Fibers for Electronic Textiles
IF 3.9 3区 材料科学Macromolecular Materials and EngineeringPub Date : 2022-03-14 DOI: 10.1002/mame.202270011
Jordan Tabor, Brendan Thompson, Talha Agcayazi, Alper Bozkurt, Tushar K. Ghosh
New melt-processable thermoplastic polyimides for opto-electronic applications
IF 0 Other ConferencesPub Date : 2012-10-19 DOI: 10.1117/12.927984
Aditya Narayanan, Gurulingamurthy M. Haralur
来源期刊
Resources Policy
Resources Policy ENVIRONMENTAL STUDIES-
CiteScore
13.40
自引率
23.50%
发文量
602
审稿时长
69 days
期刊介绍: Resources Policy is an international journal focused on the economics and policy aspects of mineral and fossil fuel extraction, production, and utilization. It targets individuals in academia, government, and industry. The journal seeks original research submissions analyzing public policy, economics, social science, geography, and finance in the fields of mining, non-fuel minerals, energy minerals, fossil fuels, and metals. Mineral economics topics covered include mineral market analysis, price analysis, project evaluation, mining and sustainable development, mineral resource rents, resource curse, mineral wealth and corruption, mineral taxation and regulation, strategic minerals and their supply, and the impact of mineral development on local communities and indigenous populations. The journal specifically excludes papers with agriculture, forestry, or fisheries as their primary focus.
期刊最新文献
Simulating resource movements and markets: A continuous dynamical system with delays to model anthropogenic metal cycles Reclaiming homeland - An evaluation of traditional land use planning in oils sands mine closure and reclamation plans Greening the mines: Managing efficiency, environmental impact, and ecology in Chinese mining regions Assessing the dual impact of gold mining on local communities: Socio-economic benefits and environmental challenges Corruption, terrorism and illicit financial flows related to extractive commodity trade in Africa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1