Xiangdi Zhao , Jiangyue Zhao , Xiaolong Zhu , Wei Xu , Guangwen Zhang , Chun Wang , Xishi Wang
{"title":"Study on the suppression of hydrogen-air explosions by ultrafine water mist containing KCl, K2CO3, or NaCl","authors":"Xiangdi Zhao , Jiangyue Zhao , Xiaolong Zhu , Wei Xu , Guangwen Zhang , Chun Wang , Xishi Wang","doi":"10.1016/j.firesaf.2025.104356","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen explosions pose significant risks in industrial applications due to their highly reactive and flammable nature. While most existing studies have focused on water mist (WM) with additives to suppress deflagrations in hydrocarbon combustion, research on hydrogen explosions remains limited. This work aims to address these gaps by investigating the effects of different WM concentrations (600 g/m<sup>3</sup>-2400 g/m<sup>3</sup>), alkali metal salt additives (KCl, K<sub>2</sub>CO<sub>3</sub>, NaCl), and alkali metal salt concentrations (2.5%, 5%, and 7.5%) on hydrogen explosions across varying hydrogen concentrations (20%–40%) in a vented vessel. Key findings reveal that 5% KCl mist exhibits a better suppression efficiency. Increased mist concentration effectively reduces both flame propagation velocity and explosion pressure. When the hydrogen concentrations are 20% and 35%, with a 5% KCl mist concentration of 2400 g/m<sup>3</sup>, the maximum explosion overpressure decreased by 60.48% and 40.02% respectively, compared to no suppressant. The suppression mechanism was inferred to involve a combination of physical effects (heat absorption and dilution) and chemical interactions (formation of KOH). These results provide valuable insights into optimizing explosion suppression strategies for hydrogen explosions in the process industry.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104356"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000207","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen explosions pose significant risks in industrial applications due to their highly reactive and flammable nature. While most existing studies have focused on water mist (WM) with additives to suppress deflagrations in hydrocarbon combustion, research on hydrogen explosions remains limited. This work aims to address these gaps by investigating the effects of different WM concentrations (600 g/m3-2400 g/m3), alkali metal salt additives (KCl, K2CO3, NaCl), and alkali metal salt concentrations (2.5%, 5%, and 7.5%) on hydrogen explosions across varying hydrogen concentrations (20%–40%) in a vented vessel. Key findings reveal that 5% KCl mist exhibits a better suppression efficiency. Increased mist concentration effectively reduces both flame propagation velocity and explosion pressure. When the hydrogen concentrations are 20% and 35%, with a 5% KCl mist concentration of 2400 g/m3, the maximum explosion overpressure decreased by 60.48% and 40.02% respectively, compared to no suppressant. The suppression mechanism was inferred to involve a combination of physical effects (heat absorption and dilution) and chemical interactions (formation of KOH). These results provide valuable insights into optimizing explosion suppression strategies for hydrogen explosions in the process industry.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.