On-chip multidimensional (de)multiplexer utilizing adiabatic structure-connected micro-ring resonators

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2025-02-24 DOI:10.1007/s11433-024-2605-3
Zhiwei Guan, Keyin Wen, Chuangxin Xie, Ruixue Dou, Tianyimei Zuo, Junmin Liu, Huapeng Ye, Chaofeng Wang, Ze Dong, Dianyuan Fan, Shuqing Chen
{"title":"On-chip multidimensional (de)multiplexer utilizing adiabatic structure-connected micro-ring resonators","authors":"Zhiwei Guan,&nbsp;Keyin Wen,&nbsp;Chuangxin Xie,&nbsp;Ruixue Dou,&nbsp;Tianyimei Zuo,&nbsp;Junmin Liu,&nbsp;Huapeng Ye,&nbsp;Chaofeng Wang,&nbsp;Ze Dong,&nbsp;Dianyuan Fan,&nbsp;Shuqing Chen","doi":"10.1007/s11433-024-2605-3","DOIUrl":null,"url":null,"abstract":"<div><p>On-chip multidimensional multiplexing has shown considerable potential for enhancing transmission capacity and developing communication networks in integrated optical systems. Micro-ring resonators, which utilize the wavelength-dependent whispering gallery resonance mechanism and feature customizable cavity lengths, offer inherent advantages for accurate wavelength filtering. These characteristics make them promising candidates for wavelength multiplexers. However, a significant challenge arises from the mismatch in the effective refractive index between orthogonal linear polarizations, which introduces complexities to polarization channel multiplexing and impedes progress in on-chip multidimensional multiplexing that integrates both wavelength and polarization channels. In this work, we propose a double-layer adiabatic structure-connected micro-ring resonator (AMRR) with vertical refractive index asymmetry, demonstrating its utility in multidimensional (de)multiplexers. Our approach enables polarization division multiplexing (PDM) by facilitating polarization rotation between transverse electric and transverse magnetic polarizations through polarization hybridization. The (de)multiplexing of both wavelength and polarization channels is achieved by controlling the incident light direction and filtering the resonance wavelength within the micro-ring resonator. As a proof of concept, we successfully transmitted 144 Gbit/s QPSK-OFDM signals and achieved bit error rates below the forward error correction threshold at −19 dBm using the proposed multidimensional (de)multiplexer, which accommodates 3 wavelengths and 2 polarizations. Our design, which leverages the AMRR for simultaneous (de)multiplexing of wavelength and polarization channels, not only overcomes the limitation of traditional micro-ring resonators in implementing PDM, but also reduces the footprint of the multidimensional (de)multiplexer to 27 µm × 219 µm, an order of magnitude smaller compared to conventional designs.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2605-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On-chip multidimensional multiplexing has shown considerable potential for enhancing transmission capacity and developing communication networks in integrated optical systems. Micro-ring resonators, which utilize the wavelength-dependent whispering gallery resonance mechanism and feature customizable cavity lengths, offer inherent advantages for accurate wavelength filtering. These characteristics make them promising candidates for wavelength multiplexers. However, a significant challenge arises from the mismatch in the effective refractive index between orthogonal linear polarizations, which introduces complexities to polarization channel multiplexing and impedes progress in on-chip multidimensional multiplexing that integrates both wavelength and polarization channels. In this work, we propose a double-layer adiabatic structure-connected micro-ring resonator (AMRR) with vertical refractive index asymmetry, demonstrating its utility in multidimensional (de)multiplexers. Our approach enables polarization division multiplexing (PDM) by facilitating polarization rotation between transverse electric and transverse magnetic polarizations through polarization hybridization. The (de)multiplexing of both wavelength and polarization channels is achieved by controlling the incident light direction and filtering the resonance wavelength within the micro-ring resonator. As a proof of concept, we successfully transmitted 144 Gbit/s QPSK-OFDM signals and achieved bit error rates below the forward error correction threshold at −19 dBm using the proposed multidimensional (de)multiplexer, which accommodates 3 wavelengths and 2 polarizations. Our design, which leverages the AMRR for simultaneous (de)multiplexing of wavelength and polarization channels, not only overcomes the limitation of traditional micro-ring resonators in implementing PDM, but also reduces the footprint of the multidimensional (de)multiplexer to 27 µm × 219 µm, an order of magnitude smaller compared to conventional designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
On-chip multidimensional (de)multiplexer utilizing adiabatic structure-connected micro-ring resonators Preformed Cooper pairs in a triclinic iron pnictide superconductor Superradiant growth anomaly magnification in evolution of vector bosonic condensates bounded by a Kerr black hole with near-horizon reflection Aligning nano-scale crystals in bulk materials Spin magnetization in unconventional antiferromagnets with collinear and non-collinear spins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1