Towards automatical tumor segmentation in radiomics: a comparative analysis of various methods and radiologists for both region extraction and downstream diagnosis.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-02-26 DOI:10.1186/s12880-025-01596-2
Ying Yu, Gang-Feng Li, Wei-Xiong Tan, Xiao-Yan Qu, Tao Zhang, Xing-Yi Hou, Yuan-Bo Zhu, Zhi-Ying Ma, Lu Yang, Ya Gao, Mei Yu, Cui Yue, Zhen Zhou, Yang Yang, Lin-Feng Yan, Guang-Bin Cui
{"title":"Towards automatical tumor segmentation in radiomics: a comparative analysis of various methods and radiologists for both region extraction and downstream diagnosis.","authors":"Ying Yu, Gang-Feng Li, Wei-Xiong Tan, Xiao-Yan Qu, Tao Zhang, Xing-Yi Hou, Yuan-Bo Zhu, Zhi-Ying Ma, Lu Yang, Ya Gao, Mei Yu, Cui Yue, Zhen Zhou, Yang Yang, Lin-Feng Yan, Guang-Bin Cui","doi":"10.1186/s12880-025-01596-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>By discussing the difference, stability and classification ability of tumor contour extracted by artificial intelligence and doctors, can a more stable method of tumor contour extraction be obtained?</p><p><strong>Methods: </strong>We propose a novel framework for the automatic segmentation of lung tumor contours and the differential diagnosis of downstream tasks. This framework integrates four key modules: tumor segmentation, extraction of radiomic features, feature selection, and the development of diagnostic models for clinical applications. Using this framework, we conducted a study involving a cohort of 1,429 patients suspected of lung cancer. Four automatic segmentation methods (RNN, UNET, WFCM, and SNAKE) were evaluated against manual segmentation performed by three radiologists with varying levels of expertise. We further studied the consistency of radiomic features extracted from these methods and evaluates their diagnostic performance across three downstream tasks: benign vs. malignant classification, lung adenocarcinoma infiltration, and lung nodule density classification.</p><p><strong>Results: </strong>The Dice coefficient of RNN is the highest among the four automatic segmentation methods (0.803 > 0.751, 0.576, 0.560), and all P < 0.05. In the consistency comparison of the seven contour-extracted radiomic features, that the features extracted by RNN and S1 (the senior radiologist) showed the highest similarity which was higher than the other automatic segmentation methods and doctors with low seniority. In all three downstream tasks, the radiomic features extracted from RNN segmentation contours showed the highest diagnostic discrimination. In the classification of benign and malignant nodules, the RNN method performed slightly better than the S1 method, with an AUC of 0.840 ± 0.01 and 0.824 ± 0.015, respectively, and significantly better than the other five methods. Similarly, the RNN method had an AUC value of 0.946 in lung adenocarcinoma infiltration, and a kappa value of 0.729 in lung nodule density classification, both of which were better than the other six methods.</p><p><strong>Conclusions: </strong>Our findings suggest that AI-driven tumor segmentation methods can enhance clinical decision-making by providing reliable and reproducible results, ultimately emphasizing the auxiliary role of automated tumor contouring in clinical practice. The findings will have important implications for the application of radiomics in clinical practice.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"63"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01596-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: By discussing the difference, stability and classification ability of tumor contour extracted by artificial intelligence and doctors, can a more stable method of tumor contour extraction be obtained?

Methods: We propose a novel framework for the automatic segmentation of lung tumor contours and the differential diagnosis of downstream tasks. This framework integrates four key modules: tumor segmentation, extraction of radiomic features, feature selection, and the development of diagnostic models for clinical applications. Using this framework, we conducted a study involving a cohort of 1,429 patients suspected of lung cancer. Four automatic segmentation methods (RNN, UNET, WFCM, and SNAKE) were evaluated against manual segmentation performed by three radiologists with varying levels of expertise. We further studied the consistency of radiomic features extracted from these methods and evaluates their diagnostic performance across three downstream tasks: benign vs. malignant classification, lung adenocarcinoma infiltration, and lung nodule density classification.

Results: The Dice coefficient of RNN is the highest among the four automatic segmentation methods (0.803 > 0.751, 0.576, 0.560), and all P < 0.05. In the consistency comparison of the seven contour-extracted radiomic features, that the features extracted by RNN and S1 (the senior radiologist) showed the highest similarity which was higher than the other automatic segmentation methods and doctors with low seniority. In all three downstream tasks, the radiomic features extracted from RNN segmentation contours showed the highest diagnostic discrimination. In the classification of benign and malignant nodules, the RNN method performed slightly better than the S1 method, with an AUC of 0.840 ± 0.01 and 0.824 ± 0.015, respectively, and significantly better than the other five methods. Similarly, the RNN method had an AUC value of 0.946 in lung adenocarcinoma infiltration, and a kappa value of 0.729 in lung nodule density classification, both of which were better than the other six methods.

Conclusions: Our findings suggest that AI-driven tumor segmentation methods can enhance clinical decision-making by providing reliable and reproducible results, ultimately emphasizing the auxiliary role of automated tumor contouring in clinical practice. The findings will have important implications for the application of radiomics in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Automated segmentation of brain metastases in T1-weighted contrast-enhanced MR images pre and post stereotactic radiosurgery. Accuracy of ultrasonographic transcerebellar diameter for dating in third trimester of pregnancy in Nigerian women: a cross-sectional study. Structured reporting of gliomas based on VASARI criteria to improve report content and consistency. The correlation analysis between Normalized Wall Index and cerebral perfusion in patients with Mild Carotid Artery Stenosis under 3.0T MRI. Enhanced tuberculosis detection using Vision Transformers and explainable AI with a Grad-CAM approach on chest X-rays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1