Zhiwei Chen, Bin Wang, Usman Farooq, Taotao Lu, Zhichong Qi, Li Zhang, Renhui Miao
{"title":"pH-dependent transport of tetracycline in saturated porous media: Single and combined effects of surfactants and iron oxide colloids","authors":"Zhiwei Chen, Bin Wang, Usman Farooq, Taotao Lu, Zhichong Qi, Li Zhang, Renhui Miao","doi":"10.1016/j.jhazmat.2025.137829","DOIUrl":null,"url":null,"abstract":"Herein, sodium dodecyl sulfate (SDS) and rhamnolipid (Rha) were employed to investigate their influences on TC mobility and ferrihydrite colloid-mediated transport of TC at variable pH values (5.0–9.0). In the binary system, surfactants suppressed TC transport because of surfactants’ bridging effects; similarly, ferrihydrite colloids also restrained TC mobility stemming from the colloid-associated TC retention. Interestingly, the degree of the inhibitory effects of colloids/surfactants increased with decreasing pH values. Surprisingly, the mutual influences of surfactants and colloids on TC movement displayed a strong pH dependence. Concretely, surfactants strengthened the repressive impacts of ferrihydrite colloids on TC mobility at pH 5.0 caused by the enhanced TC deposition on colloids attached to sand surfaces through the linking effects of surfactants. Nevertheless, at pH 7.0, adding surfactants reduced the repressive effects due to increased TC-colloid mobility and enhanced electrostatic repulsion. Unexpectedly, colloids accelerated the transport of TC with surfactants at pH 9.0 owing to colloids acting as TC carriers, the enhanced TC<sup>2–</sup>/TC<sup>–</sup> species mobility, and competitive retention. Notably, SDS exhibited a greater effect on individual TC mobility or colloid-mediated TC transport than Rha at a certain pH, which was related to the different surfactant-binding abilities of sand grains/ferrihydrite colloids.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"66 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137829","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, sodium dodecyl sulfate (SDS) and rhamnolipid (Rha) were employed to investigate their influences on TC mobility and ferrihydrite colloid-mediated transport of TC at variable pH values (5.0–9.0). In the binary system, surfactants suppressed TC transport because of surfactants’ bridging effects; similarly, ferrihydrite colloids also restrained TC mobility stemming from the colloid-associated TC retention. Interestingly, the degree of the inhibitory effects of colloids/surfactants increased with decreasing pH values. Surprisingly, the mutual influences of surfactants and colloids on TC movement displayed a strong pH dependence. Concretely, surfactants strengthened the repressive impacts of ferrihydrite colloids on TC mobility at pH 5.0 caused by the enhanced TC deposition on colloids attached to sand surfaces through the linking effects of surfactants. Nevertheless, at pH 7.0, adding surfactants reduced the repressive effects due to increased TC-colloid mobility and enhanced electrostatic repulsion. Unexpectedly, colloids accelerated the transport of TC with surfactants at pH 9.0 owing to colloids acting as TC carriers, the enhanced TC2–/TC– species mobility, and competitive retention. Notably, SDS exhibited a greater effect on individual TC mobility or colloid-mediated TC transport than Rha at a certain pH, which was related to the different surfactant-binding abilities of sand grains/ferrihydrite colloids.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.