{"title":"Biochar as a bio-renewable addition to enhance carbonation of reactive MgO cement based composites","authors":"Tolga Tamer, Hossein Mazaheri, Duygu Ergenç, Çağla Meral Akgül","doi":"10.1617/s11527-025-02573-5","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive magnesium oxide cement (RMC) is emerging as a sustainable binder in construction applications due to its ability to sequester CO<sub>2</sub> through carbonation, forming stable carbonates. However, the efficiency of RMC carbonation relies heavily on maintaining sufficient humidity and CO<sub>2</sub> concentration during curing. Various additives—including hydration agents, carbonate species, and seeds—have demonstrated effectiveness in enhancing both hydration and carbonation of RMC, thereby improving its mechanical performance. This study explores the use of biochar—a highly porous, carbon-based by-product of biomass pyrolysis—as a sustainable and cost-effective carbonation aid by evaluating its impact on the physical, rheological, mechanical, and microstructural properties of RMC composites. The results showed that the incorporation of 2 wt% biochar significantly improved early-age mechanical performance, with compressive strength increasing from 37.8 to 45.8 MPa at 7-days under CO<sub>2</sub> curing, and promoted the formation of hydrated magnesium carbonates (HMCs), raising total HMCs content from 5.4 to 13.9 wt% at 7-days under CO<sub>2</sub> curing. This improvement is attributed to biochar’s micro-filler effect, internal curing capability and its ability to facilitate CO<sub>2</sub> diffusion. Moreover, the inclusion of biochar effectively shortened the curing time, further enhancing the sustainability of CO<sub>2</sub> curing by reducing energy consumption. In conclusion, this study highlights the potential of biochar as a bio-renewable additive in RMC-based composites, enhancing brucite and HMCs formation, shortening CO<sub>2</sub>-curing time and contributing to development of sustainable, carbon-efficient construction materials.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-025-02573-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02573-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive magnesium oxide cement (RMC) is emerging as a sustainable binder in construction applications due to its ability to sequester CO2 through carbonation, forming stable carbonates. However, the efficiency of RMC carbonation relies heavily on maintaining sufficient humidity and CO2 concentration during curing. Various additives—including hydration agents, carbonate species, and seeds—have demonstrated effectiveness in enhancing both hydration and carbonation of RMC, thereby improving its mechanical performance. This study explores the use of biochar—a highly porous, carbon-based by-product of biomass pyrolysis—as a sustainable and cost-effective carbonation aid by evaluating its impact on the physical, rheological, mechanical, and microstructural properties of RMC composites. The results showed that the incorporation of 2 wt% biochar significantly improved early-age mechanical performance, with compressive strength increasing from 37.8 to 45.8 MPa at 7-days under CO2 curing, and promoted the formation of hydrated magnesium carbonates (HMCs), raising total HMCs content from 5.4 to 13.9 wt% at 7-days under CO2 curing. This improvement is attributed to biochar’s micro-filler effect, internal curing capability and its ability to facilitate CO2 diffusion. Moreover, the inclusion of biochar effectively shortened the curing time, further enhancing the sustainability of CO2 curing by reducing energy consumption. In conclusion, this study highlights the potential of biochar as a bio-renewable additive in RMC-based composites, enhancing brucite and HMCs formation, shortening CO2-curing time and contributing to development of sustainable, carbon-efficient construction materials.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.