Green Synthesis of Metal Nanoparticles Using Cinnamomum-Based Extracts and Their Applications.

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Nanotechnology, Science and Applications Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.2147/NSA.S489274
Omar Samir Mohamed Megahed Saleh Elmitwalli, Deyari Azad Kareem Kassim, Ahmed Taymour Algahiny, Fryad Zeki Henari
{"title":"Green Synthesis of Metal Nanoparticles Using <i>Cinnamomum</i>-Based Extracts and Their Applications.","authors":"Omar Samir Mohamed Megahed Saleh Elmitwalli, Deyari Azad Kareem Kassim, Ahmed Taymour Algahiny, Fryad Zeki Henari","doi":"10.2147/NSA.S489274","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nanotechnology is the science that deals with matter on the nanoscale, with sizes ranging from 1 to 100 nm. It involves designing, synthesising, characterising and applying these nanoscale materials. Nanoparticles (NPs) are known for their high surface-area to volume-ratio, surface charge density, low melting point, and distinguishably good optical/electrical properties. NPs exhibit an excellent drug delivery system, an effective contrast agent for vascular imaging, and effective antimicrobial activity. The biological synthesis of NPs is a simple, cost-effective, and environmentally friendly technique. This bottom-up technique utilises organisms' enzymes/bio-compounds and a plant extract as capping and reducing agents. <i>Cinnamomum</i> species are known for their intrinsic antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. This review summarises articles that greenly synthesised NPs using <i>Cinnamomum</i> species' extracts, describing their methodologies, characterisation of the nanoparticles and their medical applications.</p><p><strong>Methods: </strong>A literature search has been conducted on databases PubMed, ScienceDirect, and Frontier on the green synthesis of metal nanoparticles (MNPs) using <i>Cinnamomum</i>-based extracts. Various articles reported the methodology of utilising <i>Cinnamomum</i> species' extracts as reducing and capping agents. Only original lab articles were considered.</p><p><strong>Results: </strong>Various types of MNPs have been successfully synthesised. The most common <i>Cinnamomum</i> species utilised as extracts is <i>Cinnamomum tamala</i>. The most common applications tested were the MNPs' antibacterial, antiviral, antifungal, antidiabetic and anticancerous activity. MNPs also had a role in treating mice-induced polycystic ovarian syndrome and Parkinson-like neurodegenerative diseases.</p><p><strong>Conclusion: </strong><i>Cinnamomum</i> species have been successfully utilised in the green synthesis of various MNPs. Silver and Gold NPs were the most reported. These MNPs proved their efficacy in multiple fields of medicine and biology, especially their antibacterial, antiviral and antifungal activity. Notably, the newly synthesised NPs showed promising results in treating polycystic ovarian syndrome in rats.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"18 ","pages":"93-114"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S489274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Nanotechnology is the science that deals with matter on the nanoscale, with sizes ranging from 1 to 100 nm. It involves designing, synthesising, characterising and applying these nanoscale materials. Nanoparticles (NPs) are known for their high surface-area to volume-ratio, surface charge density, low melting point, and distinguishably good optical/electrical properties. NPs exhibit an excellent drug delivery system, an effective contrast agent for vascular imaging, and effective antimicrobial activity. The biological synthesis of NPs is a simple, cost-effective, and environmentally friendly technique. This bottom-up technique utilises organisms' enzymes/bio-compounds and a plant extract as capping and reducing agents. Cinnamomum species are known for their intrinsic antimicrobial, antidiabetic, antioxidant, anti-inflammatory, anticancer, and neuroprotective properties. This review summarises articles that greenly synthesised NPs using Cinnamomum species' extracts, describing their methodologies, characterisation of the nanoparticles and their medical applications.

Methods: A literature search has been conducted on databases PubMed, ScienceDirect, and Frontier on the green synthesis of metal nanoparticles (MNPs) using Cinnamomum-based extracts. Various articles reported the methodology of utilising Cinnamomum species' extracts as reducing and capping agents. Only original lab articles were considered.

Results: Various types of MNPs have been successfully synthesised. The most common Cinnamomum species utilised as extracts is Cinnamomum tamala. The most common applications tested were the MNPs' antibacterial, antiviral, antifungal, antidiabetic and anticancerous activity. MNPs also had a role in treating mice-induced polycystic ovarian syndrome and Parkinson-like neurodegenerative diseases.

Conclusion: Cinnamomum species have been successfully utilised in the green synthesis of various MNPs. Silver and Gold NPs were the most reported. These MNPs proved their efficacy in multiple fields of medicine and biology, especially their antibacterial, antiviral and antifungal activity. Notably, the newly synthesised NPs showed promising results in treating polycystic ovarian syndrome in rats.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用肉桂提取物绿色合成金属纳米粒子及其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
期刊最新文献
An Approach to Enhance the Solubility of an Atypical Antipsychotic Drug, Aripiprazole: Design, Characterization, and Evaluation of Arabinoxylan-Based Nanoparticles. Green Synthesis of Metal Nanoparticles Using Cinnamomum-Based Extracts and Their Applications. Enhanced Stability and Reusability of Subtilisin Carlsberg Through Immobilization on Magnetic Nanoparticles. Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa. Nanoparticles in Plant Cryopreservation: Effects on Genetic Stability, Metabolic Profiles, and Structural Integrity in Bleeding Heart (Papaveraceae) Cultivars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1