Novel Dual-Emissive Up-conversion Fluorescent Probe for Imaging Ectopic Lipid Accumulation in Diabetes Mellitus

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2025-03-04 DOI:10.1021/acssensors.4c03149
Zheming Zhang, Zhiyuan Wang, Mengfan Kan, Minggang Tian, Zhongwen Zhang
{"title":"Novel Dual-Emissive Up-conversion Fluorescent Probe for Imaging Ectopic Lipid Accumulation in Diabetes Mellitus","authors":"Zheming Zhang, Zhiyuan Wang, Mengfan Kan, Minggang Tian, Zhongwen Zhang","doi":"10.1021/acssensors.4c03149","DOIUrl":null,"url":null,"abstract":"Diabetic kidney disease (DKD) is a leading cause of death among diabetic patients, primarily due to ectopic lipid accumulation in nonadipose tissues. The lack of molecular tools for quantitatively visualizing this lipid accumulation has hindered in-depth studies. This study aims to develop a dual-emissive up-conversion fluorescent probe, DSDM, for precise in vivo and ex vivo analyses of lipid accumulation. DSDM exhibits up-conversion green emission and down-conversion near-infrared (NIR) fluorescence when excited at 561 nm. This allows for the simultaneous imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER), the primary sites for lipid synthesis and storage. With intracellular lipid consumption and accumulation, the green emission in LDs decreased or increased, while the NIR fluorescence in the ER remained constant. Using the NIR emission as an internal control, the green-to-NIR emission intensity ratio can quantify the LD amount accurately, overcoming the possible interferences from inhomogeneous staining, variation in cell population, and other factors. With the probe, we quantitatively analyzed LD accumulation in human kidney cells with either overexpressed or silenced aquaporin 7 (AQP7), induced by palmitic acid. Herein, AQP7 is specifically expressed in kidney tubules and is the only channel that regulates adipose glycerol transport. In DKD mice with kidney-specific AQP7 knockout, the probe successfully detected up-regulated lipid accumulation and ER stress. Tissue imaging revealed that the inhibited close contact between LDs and ER might facilitate the assessment of lipid accumulation in DKD. This approach effectively addresses the limitations of precise tissue biopsy in DKD, thereby improving DKD management.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"28 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03149","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic kidney disease (DKD) is a leading cause of death among diabetic patients, primarily due to ectopic lipid accumulation in nonadipose tissues. The lack of molecular tools for quantitatively visualizing this lipid accumulation has hindered in-depth studies. This study aims to develop a dual-emissive up-conversion fluorescent probe, DSDM, for precise in vivo and ex vivo analyses of lipid accumulation. DSDM exhibits up-conversion green emission and down-conversion near-infrared (NIR) fluorescence when excited at 561 nm. This allows for the simultaneous imaging of lipid droplets (LDs) and the endoplasmic reticulum (ER), the primary sites for lipid synthesis and storage. With intracellular lipid consumption and accumulation, the green emission in LDs decreased or increased, while the NIR fluorescence in the ER remained constant. Using the NIR emission as an internal control, the green-to-NIR emission intensity ratio can quantify the LD amount accurately, overcoming the possible interferences from inhomogeneous staining, variation in cell population, and other factors. With the probe, we quantitatively analyzed LD accumulation in human kidney cells with either overexpressed or silenced aquaporin 7 (AQP7), induced by palmitic acid. Herein, AQP7 is specifically expressed in kidney tubules and is the only channel that regulates adipose glycerol transport. In DKD mice with kidney-specific AQP7 knockout, the probe successfully detected up-regulated lipid accumulation and ER stress. Tissue imaging revealed that the inhibited close contact between LDs and ER might facilitate the assessment of lipid accumulation in DKD. This approach effectively addresses the limitations of precise tissue biopsy in DKD, thereby improving DKD management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Near-Field Electrochemistry Enables a Wearable Sensor-Embedded Smart Facemask for Personalized Respiratory Assessment Antibiofouling Coatings For Marine Sensors: Progress and Perspectives on Materials, Methods, Impacts, and Field Trial Studies High-Adhesive Hydrogel-Based Strain Sensor in the Clinical Diagnosis of Anterior Talofibular Ligament Sprain Nanotechnology-Based Wearable Electrochemical Biosensor for Disease Diagnosis Novel Dual-Emissive Up-conversion Fluorescent Probe for Imaging Ectopic Lipid Accumulation in Diabetes Mellitus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1