Ke Zhang, Peng Wang, Lingling Wu, Shuran Wang, Yanling Jia, Jie Yang
{"title":"A Soft Patch for Dynamic Myocardial Infarction Monitoring","authors":"Ke Zhang, Peng Wang, Lingling Wu, Shuran Wang, Yanling Jia, Jie Yang","doi":"10.1021/acsami.4c18868","DOIUrl":null,"url":null,"abstract":"Wearable electronics for cardiac monitoring have been widely developed in the field of routine vital sign monitoring and arrhythmia determination due to their convenience and continuity. However, there are very few reports on the demonstration of a stretchable multilead electrocardiogram (ECG) patch integrated with myocardial infarction (MI) location capability. Here, we first propose a wearable dynamic cardiac monitoring patch, which can acquire seven-lead ECG signals continuously. A novel stretchable bioelectrode is mounted on the patch, which is strain-insensitive in the 100% tensile strain range. Moreover, the bioelectrode maintains good adhesion to the skin at more than 0.4 N/cm. This soft and wireless multilead ECG patch is designed for long-term, all-round real-time cardiac monitoring. For MI classification, a machine learning model for MI identification and location is trained with accuracy (99.93%) and sensitivity (99.98%). In addition, we also propose a new framework for the automated annotation of MI abnormal segments, which simultaneously addresses the recognition of abnormal waveforms and the integration of interlead relationships. This study contributes to the realization of personalized medical monitoring and intervention as well as early warning for MI.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"39 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18868","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable electronics for cardiac monitoring have been widely developed in the field of routine vital sign monitoring and arrhythmia determination due to their convenience and continuity. However, there are very few reports on the demonstration of a stretchable multilead electrocardiogram (ECG) patch integrated with myocardial infarction (MI) location capability. Here, we first propose a wearable dynamic cardiac monitoring patch, which can acquire seven-lead ECG signals continuously. A novel stretchable bioelectrode is mounted on the patch, which is strain-insensitive in the 100% tensile strain range. Moreover, the bioelectrode maintains good adhesion to the skin at more than 0.4 N/cm. This soft and wireless multilead ECG patch is designed for long-term, all-round real-time cardiac monitoring. For MI classification, a machine learning model for MI identification and location is trained with accuracy (99.93%) and sensitivity (99.98%). In addition, we also propose a new framework for the automated annotation of MI abnormal segments, which simultaneously addresses the recognition of abnormal waveforms and the integration of interlead relationships. This study contributes to the realization of personalized medical monitoring and intervention as well as early warning for MI.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.