R. R. Kayumov, A. A. Lochina, A. N. Lapshin, A. V. Bakirov, L. V. Shmygleva
{"title":"Inion Sulfocation Exchange Membranes Plasticized with Propylene Carbonate","authors":"R. R. Kayumov, A. A. Lochina, A. N. Lapshin, A. V. Bakirov, L. V. Shmygleva","doi":"10.1134/S2517751624600845","DOIUrl":null,"url":null,"abstract":"<p>The rapidly growing field of portable energy sources requires the search for and development of efficient materials for such devices. To enhance the safety of the most common metal-ion batteries (lithium-ion and sodium-ion), it has been proposed to replace the liquid electrolyte with a unipolar conductive gel-polymer electrolyte based on a Nafion-like electrolyte (Inion) plasticized with aprotic solvents. This study presents the results of investigating the thermal stability, molecular and supramolecular structure, as well as the ionic conductivity of Inion membranes in lithium and sodium forms plasticized with propylene carbonate, using methods including synchronous thermal analysis, IR spectroscopy, small-angle X-ray scattering (SAXS), and impedance spectroscopy.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 5","pages":"332 - 341"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapidly growing field of portable energy sources requires the search for and development of efficient materials for such devices. To enhance the safety of the most common metal-ion batteries (lithium-ion and sodium-ion), it has been proposed to replace the liquid electrolyte with a unipolar conductive gel-polymer electrolyte based on a Nafion-like electrolyte (Inion) plasticized with aprotic solvents. This study presents the results of investigating the thermal stability, molecular and supramolecular structure, as well as the ionic conductivity of Inion membranes in lithium and sodium forms plasticized with propylene carbonate, using methods including synchronous thermal analysis, IR spectroscopy, small-angle X-ray scattering (SAXS), and impedance spectroscopy.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.