{"title":"Enthalpy of Interaction of Lithium Nafion Membrane with Aqueous Solutions of Alcohols and Polar Aprotic Solvents","authors":"S. D. Chernyuk, A. P. Safronov, O. V. Bushkova","doi":"10.1134/S2517751624600869","DOIUrl":null,"url":null,"abstract":"<p>The degree of swelling of the lithium form of the perfluorosulfonic acid membrane Nafion in alcohols (ethanol, 2-propanol), water-alcohol mixtures, and highly polar aprotic solvents (<i>N</i>,<i>N</i>-dimethylformamide (DMF) and <i>N</i>-methyl-2-pyrrolidone (NMP)) was studied, as well as the thermodynamics of membrane-solvent interaction using microcalorimetry. It was shown that the equilibrium swelling degree of the membrane correlates with the donor number of the solvent and the enthalpy of polymer swelling. The enthalpy of membrane swelling in all studied solvents is negative, indicating polymer solvation. Concentration dependences of the swelling and mixing enthalpies in DMF and NMP were studied in greater detail. The negative values of the swelling enthalpy across the entire concentration range of the solvents indicate good thermodynamic compatibility of the membrane with the solvent and highlight the advantage of using these solvents to produce Nafion dispersions due to their strong solvating properties.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 5","pages":"342 - 349"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624600869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The degree of swelling of the lithium form of the perfluorosulfonic acid membrane Nafion in alcohols (ethanol, 2-propanol), water-alcohol mixtures, and highly polar aprotic solvents (N,N-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP)) was studied, as well as the thermodynamics of membrane-solvent interaction using microcalorimetry. It was shown that the equilibrium swelling degree of the membrane correlates with the donor number of the solvent and the enthalpy of polymer swelling. The enthalpy of membrane swelling in all studied solvents is negative, indicating polymer solvation. Concentration dependences of the swelling and mixing enthalpies in DMF and NMP were studied in greater detail. The negative values of the swelling enthalpy across the entire concentration range of the solvents indicate good thermodynamic compatibility of the membrane with the solvent and highlight the advantage of using these solvents to produce Nafion dispersions due to their strong solvating properties.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.